多端子系のジョセフソン接合が示すトポロジカル物性

横山知大[†] 〈東京大学物性研究所 tomohiro.yokoyama@mp.es.osaka-u.ac.jp〉

トポロジーはこの30年ほどの物理学におけるキーワードの1つである. 元々は物体の形状を穴の数などで分類する数学の分野だが、D. J. Thouless らによって整数量子ホール効果がトポロジーの表現で理解できることが指摘された. 波動関数が非自明なトポロジーを持つ物質・状態はトポロジカル物質・トポロジカル相と呼ばれ、トポロジカル絶縁体やワイル半金属などが研究されている. トポロジカル物質の特徴は保護された表面状態の存在である. これは真空中と物質中のトポロジーが異なるために現れる性質で、量子ホール効果のエッジ状態もその1つとして理解できる.

整数量子ホール効果の場合、固有状態か ら幾何学的なベクトル場であるベリー曲率 場が定義される. 2次元ブリュアンゾーン においてベリー曲率場(の法線成分)を面 積分すると、整数に 2π を掛けた値となる、 この整数はTKNN数またはチャーン数と 呼ばれ、量子ホール効果のトポロジーを特 徴付ける. ワイル半金属は3次元トポロジ カル物質の1つで、そのバンドは円錐状の 分散関係をともなう縮退点, ワイル点を持 つ. 本稿ではこのワイル点に関するトポロ ジーに着目する. ワイル半金属において. チャーン数は3次元ブリュアンゾーン中の 結晶運動量の1成分を固定した2次元平面 で定義される. その際, ワイル点はベリー 曲率場を作り出すモノポールとして振る舞 う. ベリー曲率場はそのモノポールによる 磁場、チャーン数はその磁束のような関係 がある. このため, ワイル点は 「トポロジ カル電荷を持つ」と表現される.

トポロジカル物性は物質科学分野だけではなく、半導体ナノ構造・メゾスコピック系でも着目されている。例えば、擬1次元の半導体ナノワイヤ中に近接効果によって

s 波超伝導相関が染み出した系において、 その超伝導領域の端に形成されるマヨラナ 準粒子はトポロジカル相のエッジ状態とし て理解されている.

超伝導体接合系は強磁性やスピン軌道相 互作用との協奏、またはナノ構造・多端子 構造による新奇物性の舞台として魅力的で ある。筆者も含めた最近の研究では、常伝 導体に4つ(以上の)超伝導体を接合した 多端子ジョセフソン接合において、アンド レーエフ束縛状態のスペクトルにワイル点 (ワイル特異点) が現れることを報告した. 常伝導領域では電子とホールが伝導するが. 超伝導/常伝導領域の境界におけるアンド レーエフ反射によって電子とホールが結合 して、アンドレーエフ束縛状態が形成され る. 超伝導電流は束縛状態を介して流れる ため、その位相差に対する振る舞いが接合 の性質を決める. N個の超伝導体があると. N-1個の独立な超伝導位相差が定義され る. その全ての位相差に対してアンドレー エフスペクトルは 2π の周期性を持つ. こ れらの位相差を「結晶運動量」、スペクト ルを「エネルギーバンド」と考えると、多 端子ジョセフソン接合は「人工的な物質」 とみなすことができる. 本稿では, この人 工物質に現れるワイル特異点を紹介する. 超伝導相関はs波の対称性のみを想定し、 磁場・スピン軌道相互作用などがなくスペ クトルはスピン縮退している。にもかかわ らず特異点は現れる. これは「ナノ構造に よるトポロジカル物性」である. さらに, 特異点の検出という観点から、チャーン数 による量子化された横伝導度について議論 する.

多端子ジョセフソン接合はまだ新しい研究対象であり、トポロジカルな性質も含めた多様な進展が期待される.

-Kevwords-

ワイル半金属:

アンドレーエフ反射:

超伝導領域 $(\Delta \neq 0)$ と常伝導領域 $(\Delta = 0)$ の境界面で起こる電子 $(\Delta > E > 0)$ とホール $(0 > E > - \Delta)$ 間の反射過程. 常伝導側から電子 $(\pi - \mu)$ が超伝導領域に近づくと、ホール (電子) が常伝導領域に反射される. その際、電子とホールで等しく電流に寄与し、超伝導領域ではクーパー対が電子による電流の 2 倍の電流に寄与する.

©2017 日本物理学会

^{**} 現所属:大阪大学大学院基礎工学研究科