Spin-orbital superstructure in strained ferrimagnetic perovskite cobalt oxide

J. Fujiokaa, Y. Yamasakib, H. Nakaob, R. Kumab, Y. Murakamib, M. Nakamurac, M. Kawasakia,c, and Y. Tokuraa,c

aDepartment of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Hongo, Tokyo 113-8656, Japan
bCondensed Matter Research Center (CMRC) and Photon Factory, Institute of Materials Structure Science (IMSS), KEK, Tsukuba, 305-0801, Japan
cCenter for Emergent Matter Science, RIKEN, Wako 351-0198, Japan, e-mail fujioka@ap.t.u-tokyo.ac.jp

Electronic phases with the nanometer-scale self-organization of electrons are ubiquitously observed in correlated electron systems. In d-electron transition metal oxides, versatile quantum states with charge-spin-orbital ordering have been realized by tuning the material control parameter such as the effective one-electron band-filling or band-width. In this study, we show that the control of the spin-state degree of freedom [low/intermediate/high spin states, see Fig (a)] gives rise to a new complex spin-orbital superstructure with spontaneous magnetization in a thin film of perovskite LaCoO$_3$ by means of x-ray diffraction, optical spectroscopy and magnetization measurements. A tiny crystal-lattice strain can promote the spin-state transition of Co ions and the ordering of Co $3d$ orbitals modulates the spin exchange interactions to produce the unique ferrimagnetic structure [Fig (b)]. The spin-state variability as a tuning parameter of the spin-orbital entanglement offers a unique opportunity for designing novel magnetic phenomena and spintronic functions.

Fig (a) Schematic view of the spin states of trivalent Co-ion (b) Electronic phase diagrams of the tensile strained LaCoO$_3$ and the bulk RCoO$_3$. The circle, square and triangle indicate the typical spin state crossover temperature, the transition temperature of orbital ordering (OO) and that of the ferrimagnetic (FerriM) ordering, respectively.