Giant magnetoresistance in silicon

— Diode-assisted geometrical enhancement of magnetoresistance

Xiaozhong Zhang

School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

xzzhang@tsinghua.edu.cn

Magnetoresistance (MR) reported in some non-magnetic semiconductors particularly silicon has triggered considerable interest owing to the large magnitude of the effect. Here we showed that MR in lightly doped n-Si can be significantly enhanced by introducing a diode in the device and proper design of the carrier path [1]. We designed an MR device whose room-temperature MR ratio reaching 30% at 0.065T and 20000% at 1.2T, respectively, approaching the performance of commercial MR devices. We also realized MR of over 2600% in GaAs and Ge at 1.2T. The MR mechanism of our devices is: The diode helps to establish a transition from low resistance state to high resistance state. At the transition region the small change in magnetic field cause a large change in MR. Because our MR device is based on a conventional Si/semiconductor platform, it should be possible to integrate it with existing Si/semiconductor devices and so aid the development of Si/semiconductor-based magneto-electronics leading to some multifunctional devices made in one single Si/semiconductor chip.