Transport and magnetic properties of $Y_{1-x}Pr_xCo_2$ compounds

A. Teruyaa, K. Uchimab, M. Takedaa, Y. Takaesub, T. Uejoa, A. Nakamuraa, M. Hedoa, T. Nakamaa, K. Yagasakia, and A. T. Burkovc

aFaculty of Science, University of the Ryukyus, Nishihara, 903-0213, Japan
bGeneral Education, Okinawa Christian Junior College, Nishihara, 903-0207, Japan
cA. F. Ioffe Physical-Technical Institute, Sankt-Petersburg, 194021, Russia

uchima@ocjc.ac.jp

Pseudo-binary $Y_{1-x}R_xCo_2$ ($R=$ rare earths) compounds belong to the RCO_2 family with a cubic Laves phase MgCu$_2$-type structure. Curie temperature T_C of the $Y_{1-x}R_xCo_2$ system decreases with decreasing of magnetic R content x, and vanishes at a critical composition $x = x_c$. Anomalous behaviors of low-temperature electrical resistivity ρ and thermopower S of $Y_{1-x}R_xCo_2$ system with heavy rare earths have been observed, in particular: (i) residual resistivity ρ_0 is strongly enhanced on approaching to x_c, and (ii) magnetoresistance (MR) is large positive value in magnetic ordering region of $x \gtrsim x_c$. It has been found that these anomalous behaviors in heavy rare earth based alloys are connected with a non-uniform magnetization of the Co subsystem induced by spatial fluctuating exchange field owing to structural disorder of R subsystem [1].

In order to clarify the magnetic and transport properties in light rare earth based alloys, the measurements of ρ and S of the $Y_{1-x}Pr_xCo_2$ system have been performed at temperatures from 2 K to 300 K in magnetic fields up to 10 T. PrCo$_2$ is ferromagnet with $T_C = 39$ K. As shown in Fig. 1, T_C decreases with decreasing Pr content x, and vanishes at $x \approx x_c$. And, ρ_0 takes a maximum at $x \approx x_c$, which is almost the same behavior as that of the heavy rare earth systems. MR of the $Y_{1-x}Pr_xCo_2$ system is negative in the whole range of x, except $x = 0.0$ and 1.0, which is contradict to the theoretical prediction. It is expected that MR is positive in $x \lesssim x_c$, and negative in $x \gtrsim x_c$. The Curie temperature T_C of $Y_{1-x}Pr_xCo_2$ decreases with increasing pressure P, whereas ρ_0 increases with increasing P. These behaviors are similar to that of the heavy rare earth compounds.

Figure 1: Composition x dependence of T_C and ρ_0 of $Y_{1-x}Pr_xCo_2$.