Magnetic Interaction between Absorbed O_2 Molecules in Cu-Trans-1,4-Cyclohexanedicarboxylic Acid

M. Soda, Y. Honma, K. Nakajimaa, S. Kawamuraa, S. Takamizawab, and T. Masuda

Institute for Solid State Physics, University of Tokyo, Tokai, Ibaraki 319-1106, Japan
aJ-PARC Center, Tokai, Ibaraki 319-1195, Japan
bYokohama City University, Seto, Kanazawa-ku, Yokohama 236-0027, Japan

soda@issp.u-tokyo.ac.jp

Cu-Trans-1,4-Cyclohexanedicarboxylic Acid (Cu-CHD) with one dimensional micropores, which can generate stable O_2-inclusion crystals at low temperature using adsorption conditions, has been extensively investigated.[1] In the case of the low O_2 adsorption, temperature (T) dependence of the magnetic susceptibility (χ) shows the nonmagnetic ground state at low T. The magnetization is explained by the dimer model of $S=1/2$ with an antiferromagnetic exchange interaction although the oxygen molecule has $S=1$. In the case of the high O_2 adsorption, on the other hand, Curie-Weiss like behavior is observed in the low T region.

Neutron scattering measurements were carried out using the cold neutron chopper spectrometer AMATERAS installed at J-PARC to clarify the magnetic interactions between absorbed O_2 molecules in Cu-CHD.

At low T, the dispersionless magnetic excitations were observed for both the low and high O_2 adsorption Cu-CHD samples, indicating that the absorbed O_2 molecules form clusters. These magnetic excitations for the low and high O_2 adsorption Cu-CHD samples can be explained by the O_2 dimer having nonmagnetic ground state and O_2 trimer having the magnetic ground state, respectively. On the other hand, the spin Hamiltonians do not explain the unique behavior of the observed magnetization.

In order to reproduce the magnetization qualitatively, we need to lower the level of the higher energies originally calculated from the spin Hamiltonians. The presumed energy scheme is consistent with the ab initio calculation including the intermolecular potential and spin states.[2] Since the absorbed O_2 molecules in micropores have the strong coupling between the magnetism and lattice, they are the interesting system with the multi degree of freedom.