Feasibility of CMOS Phonon Laser

Kazuhide Abe
Corporate R&D Center, Toshiba Corp., Kawasaki 212-8582, Japan
kazuhide.abe@toshiba.co.jp

Recently, stimulated emissions of phonon have been experimentally demonstrated by Grudinin et al. using optical ring resonators [1], and by Beardsley et al. using quantum wells of super-lattice [2]. Whereas both the groups used light as energy source, Chen et al. have proposed a “phonon laser” using hot carriers, which are accelerated by electric field between drain and source in metal-semiconductor field-effect transistor (MESFET), as the energy source to create coherent phonon [3]. This paper preliminarily demonstrates feasibility of phonon laser using n-channel MOSFET with multi-finger gate structure [4]. LO phonon is assumed to be created through stimulated emission in impact ionization process of hot carriers [Figs. 1(a) and (b)] followed by decay of the LO phonon into two LA phonons causing acoustic resonance. A coherent resonance at 300 MHz was experimentally observed in frequency dependence of impedance ($R+iX$) measured for the p-well terminal [Fig. 1(c)]. Quality factor was estimated to be higher than 1500, suggesting that the hole creation in impact ionization process is synchronized with the acoustic resonance.

Fig. 1 Model of stimulated phonon emission by hot carrier (a), (b), and sharp resonance ($Q>1500$) observed for p-well terminal (c).

V_{g}	1.2 V	R_{max}	290 Ω
V_{d}	1.2 V	R_{min}	-55 Ω
$Z=R+iX$		$Q=1,580$	