Potential distribution at Pt/SrTiO$_3$ interface determined by X-ray photoelectron spectroscopy

Naoki Ohashi, Sakyo Hirose,a Hideki Yoshikawa, Shigenori Ueda, Jianyong Li, Isao Sakaguchi

National Institute for Materials Science, Tsukuba 305-0044, Japan
aMurata Manufacturing Co., Ltd., Nagaokakyo-shi, Kyoto 617-8555, Japan

Ohashi.naoki@nims.go.jp

Metal/SrTiO$_3$ junctions show unique electric characteristics, such as contact at Pt and heavily doped n-type SrTiO$_3$ shows large hysteresis in its current-voltage (I-V) relationships [1]. It is evident that those properties are, in principle, understood by the picture of Schottky junction but mechanism of the hysteresis is still unclear, although there are many attempts to develop non-volatile memory cells utilizing the hysteresis in I-V curve.

One of the difficulties in studying metal/SrTiO$_3$ junctions is that capacitance-voltage (C–V) measurement, the most fundamental technique for evaluation of physical parameters at Schottky junctions, is not able to be analyzed using conventional Schottky junction theories. A possible way for us to understand the I–V and C–V curve of the metal/SrTiO$_3$ junctions is that we assume electric field dependence of dielectric permittivity in SrTiO$_3$. With this assumption, we could fit the observed I–V and C–V curves to a phenomenological model [2].

In this study, we performed hard-x-ray photoelectron spectroscopy (HAXPES) [3] for evaluation of potential distribution at the metal/SrTiO$_3$ junctions. In order to verify our model assuming the field dependent electric permittivity, we measured temperature variation of HAXPES profile at T=50-300K.