Oxygen pressure dependence and monopolar conductivity of Al$_2$O$_3$ thin films by pulsed laser deposition method

G. Z. Geng1,2, F. K. Shan1,2, Q. Zhang1,2, G. X. Liu1, B. C. Shin2, W. J. Lee2, I. S. Kim2, C. R. Cho3

1College of Physics Science and Lab of New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China
2Electronic Ceramics Center, DongEui University, Busan 614-714, Korea
3College of Nanoscience and Nanotechnology, Pusan National University, Busan 609-735, Korea

Submitting & presenting author: gengguangzhou@gmail.com
Corresponding author: fkshan@qdu.edu.cn
Also for correspondence: shinbc@deu.ac.kr

Al$_2$O$_3$ is considered as one of the potential materials for replacing SiO$_2$ in high k dielectric applications, and it has been prepared by many methods [1-4]. To further investigate the material, Al$_2$O$_3$ thin films were deposited at room temperature by pulsed laser deposition method at different oxygen pressures on p-type Si substrates. As confirmed by the x-ray diffraction results, the Al$_2$O$_3$ thin films were amorphous. The grain size, as well as the growth rate, increased obviously with the O$_2$ pressure. As a consequence, the surface roughness of the Al$_2$O$_3$ thin films also increased with increasing pressure. To study the electric and dielectric property of the films, Al-Al$_2$O$_3$-Si structures were fabricated. It was found that the capacitance of the Al$_2$O$_3$ thin film showed a strong relationship with O$_2$ pressure. Due to less oxygen vacancies and improved crystal quality at higher O$_2$ pressures, the leakage current decreased with the O$_2$ pressure. At a positive bias, the current in the dark was not large and rapidly saturated. However, under illumination the current became larger, which indicated a monopolar mechanism of Al$_2$O$_3$ conduction [5].