Weak antilocalization in topological insulator Bi$_2$Te$_3$ microflakes

Juhn-Jong Lin,a,b Shao-Pin Chiua

a NCTU-RIKEN Joint Research Laboratory, Institute of Physics, National Chiao Tung University, Hsinchu 30010, Taiwan

b Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan

jjlin@mail.nctu.edu.tw

We have studied the carrier transport in two topological insulator Bi$_2$Te$_3$ microflakes between 0.3 and 10 K and under applied backgate voltages. Logarithmic temperature dependent resistance corrections due to the two-dimensional electron-electron interaction effect in the presence of weak disorder were observed. The extracted Coulomb screening parameter is negative, which is in accord with the situation of strong spin-orbit scattering as is inherited in the topological insulator materials. In particular, positive magnetoresistances in the two-dimensional weak-antilocalization effect were measured in low magnetic fields, which can be satisfactorily described by a multichannel-conduction model. Both at low temperatures of $T < 1$ K and under high positive backgate voltages, signatures of the presence of two coherent conduction channels were observed, as indicated by an increase by a factor of ≈ 2 in the prefactor which characterizes the weak-antilocalization magnetoresistance magnitude. Our results are discussed in terms of the (likely) existence of the Dirac fermion surface states, in addition to the bulk states, in the three-dimensional topological insulator Bi$_2$Te$_3$ material [1].