The relationship between low-temperature excess heat-capacity and physical properties in ZnO-P2O5 glasses

S. Ishizeki, K. Nakamura, R. Ihara, Y. Takahashi, T. Fujiwara

Tohoku University, Sendai 980-8579, Japan

e-mail address: fujiwara@laser.apph.tohoku.ac.jp

The low-temperature heat-capacity of glassy material shows a deviation from Debye T^3 law, meaning that $C_p/T^3 - T$ plot reveals the excess heat capacity, so-called “boson peak” [1]. Several researchers have investigated the relationship between boson peak and material structures. However, origin of boson peak is unknown. The binary ZnO-P2O5 glass system is known for having unique characteristics, for example, although physical properties such as density are shown simple behavior with glass composition, glass transition temperature has extremal value. [2]. In this study, we measured low temperature excess heat-capacity of xZnO-(100-x)P2O5 glasses in order to clarify the relationship of the boson peak to physical properties of oxide glasses.

Figure 1 shows the Non-Debye excess heat-capacity of the studied zinc phosphate glasses. As seen in Fig. 2, decrease in the amplitude of boson peak, C_p/T^3, and shifts of peak positional, T_{max}, to the high temperature were dependent on monotonically increasing ZnO content. This composition dependence of the boson peak related to simple parameters such as density rather than glass transition temperature.

![Fig. 1. Non-Debye excess heat-capacity of the studied zinc phosphate glasses.](image)

![Fig. 2. The compositional dependence of the peak position and the amplitude of the boson peak.](image)