Phase-Slip State of Quasi-Two Dimensional Superconductors

Takahiro Yamamoto

Product Development Div., Wacom Co., Ltd., Saitama, 349-1148, Japan

yamamoto.takahiro@wacom.co.jp

In the case of low dimensional superconducting microbridges, the superconducting currents induce the nonequilibrium state called Phase-Slip Center or Phase Slip-Line. Quasiparticle diffusion currents exit in both side of the phase-slip area. We found the relationship between quasiparticle currents and superconducting currents in magnetic fields. Hysteresis of critical currents in magnetic field is determined by nonequilibrium transition magnetic field \(\tau_1(H) \) calculated in the equation (1). [1] [2]

\[
\frac{1}{2\tau_s(H)} = \frac{1}{2\tau_f} + \frac{1}{\tau_1(H)}, \quad \tau_s(H) = \frac{\hbar}{1.76k_B T_c} \frac{H_{c2}^2(T)}{H^2}
\] (1)

Due to the shielding currents induced by in superconducting electrodes, a hysteresis phenomenon is observed. [3] Regarding this hysteresis phenomenon, we have investigated the relationship between the Josephson currents in nonequilibrium state and shielding current in the surface of superconductors.