The iron-based superconductor Fe(Se,Te) is expected to bring important information on the mechanism of superconductivity, because of the simply stacking structure of iron-chalcogenide layers. In addition, the Josephson effects in multi-gap superconductors is recently attracted [1]. In this study, we investigated the c-axis I-V characteristics of Fe(Se,Te) single crystals with a small junction area which was fabricated by using a focused ion beam (FIB) etching. Figure 1 shows the temperature dependence of I-V characteristics, suggesting that the small stacks behave as like the underdamped Josephson junctions. We also measured the current distribution of switchings from the zero-voltage state. Figure 2 shows the current at maximum switching events, I_p, as a function of temperature, which was found to be well fitted with Ambegaokar-Baratoff (AB) relation by assuming that the stacks were regarded as intrinsic Josephson junctions.