Quantum Walks as charged general relativistic fermions

F. Debbasch, G. Di Molfetta, M. Bracheta

LERMA, UMR 8112, UPMC, Paris 75005, France
a UMR 8550, ENS, Paris 75005, France

fabrice.debbasch@gmail.com

The continuous limit of 1D quantum walks is revisited. A new limit procedure is introduced and the limit is determined for all walks. For a large family of walks, which includes the Hadamard walk, the continuous limit dynamics coincides formally with the transport of a relativistic spin 1/2 particle interacting with both a gravitational and an electric field. Numerical results are presented which show how a quantum walk on the line can be used to simulate a Dirac fermion crossing the horizon of a black hole.