Recent results from KamLAND

M. Otani,
for the KamLAND collaboration and the KamLAND-Zen collaboration

Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
masashi.o@awa.tohoku.ac.jp

KamLAND (Kamioka Liquid scintillator Anti-Neutrino Detector) is the 1,000 ton liquid scintillator (LS) detector (Fig. 1) located in Kamioka mine in Japan. KamLAND achieved extremely low-background level ($^{238}\text{U} \sim 10^{-18} \text{g/g}$ and $^{232}\text{Th} \sim 10^{-17} \text{g/g}$) with the LS purification systems and opened new horizon of neutrino physics via direct evidence of neutrino oscillation with reactor anti-neutrino [1] and first observation of geo-neutrinos [2].

Next program of KamLAND is search for neutrino-less double beta decay (0nbb): the KamLAND-Zen experiment. Observation of 0nbb would definitively establish the Majorana nature of the neutrino, and provide information on the absolute neutrino mass scale. KamLAND-Zen aims to search 0nbb up to effective electron neutrino mass of 50 meV and started in 2011. We present recent results of KamLAND-Zen [3]. In addition, we also present recent measurement of geo-neutrino with dataset including the reactor downtime in Japan [4].

Fig.1. Schematic diagram of the KamLAND detector