Exotic electromagnetic transitions of neutron-rich Carbon isotopes studied with extended antisymmetrized molecular dynamics

N. Furutachi

Department of Physics, Hokkaido University, Sapporo 060-0810, Japan

furutati@nucl.sci.hokudai.ac.jp

The recent experiments using radioactive isotope beams have revealed many exotic features in neutron-rich Carbon isotopes, such as the formation of one-neutron halo structure in 19C, breaking of N=14 subshell closure in 20C, and small B(E2) values in 16,18C, which may be related to each other. In even Carbon isotopes, the small B(E2) values attracted much attention, and the ground and the first excited state have been extensively studied. However, the investigation of non-yраст excited states is still insufficient, but considered to be important to pin down exotic properties of Carbon isotopes. For example, whether the $K^\pi=2^+$ side band exist or not in 16C is important to know the deformation shape of this nucleus, and related to the small B(E2;2$_1^+\rightarrow0^+$) value of 16C [1].

In this study, we have investigated detailed structures of the low-lying excited states of 16,18,20C, using the extended framed work of antisymmetrized molecular dynamics (AMD) [2]. In the present framework, the 2$^+$ excitation energies of 16,18,20C, and B(E2;2$_1^+\rightarrow0^+$) values of 16,18C are reproduced well. We have found $K^\pi=2^+$ side band with strong E2 transition between the ground band, which originate from the triaxial shape of 16C, as pointed out by Y. Kanada-En’yo [1]. However, 18C does not have 2$_2^+$ state that has strong B(E2) transition between the ground state in the present calculation, since the deformation shape of this nucleus is close to the oblate. We have also obtained 0$_2^+$ state with the neutron excitation in 16,18C. The valence neutrons of the ground states are spatially extended compared to 0$_2^+$ state, which indicate that the dominance of ($\nu\,1s_{1/2}$)2 and ($\nu\,0d_{5/2}$)2 configurations in 0$_1^+$ and 0$_2^+$ state, respectively.