Coexistence of antikaons and hyperons in nuclei and in neutron stars

Takumi Muto, Toshiki Maruyamaa, Toshitaka Tatsumib

Department of Physics, Chiba Institute of Technology, 2-1-1 Shibazono, Narashino, Chiba 275-0023, Japan
aAdvanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
bDepartment of Physics, Kyoto University, Kyoto 606-8502, Japan

takumi.muto@it-chiba.ac.jp

Multi-strangeness systems in hadronic matter have been providing unique aspects in strangeness nuclear physics. Searching for deeply bound kaonic nuclei and multi kaonic clusters may reveal kaon-nucleon (K-N) interaction and kaon dynamics in nuclear medium\cite{1}. Stimulated by these studies, we have investigated multi-antikaonic nuclei (MKN), where several K^- mesons are bound in the nucleus\cite{2}. Studies of double Λ hypernuclei and Ξ hypernuclei as well as single Λ and Σ hypernuclei, have also been unveiling hyperon(Y)-N, Y-Y interactions\cite{3}. In these studies, kaons and hyperons have been considered separately. We consider a possible coexistence of K^- mesons and hyperons in nuclei and clarify interplay between them in multi-strangeness nuclei.

We base our framework on the relativistic mean-field theory (RMF) for baryon-baryon interaction, coupled with the effective chiral Lagrangian which incorporates \bar{K}-baryon and nonlinear $\bar{K}\bar{K}$ interactions. The K^- mesons are initially put into the target nucleus with mass number A and atomic number Z. The number of the K^- mesons is denoted as j_{S}. Part of the strangeness j_{S} is supposed to be transferred to that of hyperons through $K^-N\rightarrow Y$. On the assumption of spherical symmetry, the ground state is obtained from minimization of the thermodynamic potential under the conditions of baryon number A, electric charge Z, and strangeness j_{S} conservations.

In the Figure, the density profiles of baryons are shown for the ground state of the multi-strangeness nuclei in the case of initial target nucleus 15O and $|S|=2$ (solid lines) and 10 (dashed lines). The K^- optical potential depth U_K is taken to be $|U_K| \lesssim 180$ MeV. The ground state is given by multi-hypernuclei without bound K^- mesons with central density $\rho_c \sim \rho_0$ ($=0.153$ fm, the standard nuclear density). This is because all the strangeness initially carried by K^- mesons is absorbed by the nucleons and is taken over by the hyperons (Λ) through $K^-N\rightarrow Y$. Therefore the MKN without hyperon-mixing [2] should be considered as the higher energy state. We also consider kaon condensation in hyperonic matter which may be realized in neutron stars [4] within the same interaction model elucidated here.

References
\begin{itemize}
\item [{1}] Y. Akaishi and T. Yamazaki, Phys. Rev. C 65 044005 (2002);
\item [{4}] T. Muto, Phys. Rev. C 77, 015810 (2008), and references therein.
\end{itemize}