Study of nucleosynthesis by means of 45Sc+p reaction

University of Tsukuba, Ibaraki 305-0005, Japan

a*Japan Atomic Energy Agency, Ibaraki 319-1184, Japan*

b*RIKEN, Saitama 351-0198, Japan*

s1220228@u.tsukuba.ac.jp

45Sc is known as a “bottleneck” in silicon burning which the final stage of nucleosynthesis in stars. However, there are few experimental data on reaction rate with 45Sc. The reaction flow is concentrated in the 42Ca(α,p)45Sc and 45Sc(p,γ)46Ti reactions. Especially, we focused on 42Ca(α,p)45Sc. In order to evaluate reaction rate of 42Ca(α,p)45Sc, we have performed measurements of cross section for the inverse reaction of 45Sc(p,α)42Ca($Q=2.34$MeV). For this reaction, the experimental data were limited only above $E_p=2$MeV[1]. We measured cross section in lower energy region and report our results.

This figure show an E-ΔE matrix with particle identification.