SAMURAI
– a broadband spectroemter in RIKEN RI Beam Factory –

K. Yoneda, T. Aumanna, F. Delaunayb, N. Fukuda, J. Gibelinc, J. Hwangc, N. Inabe, T. Isobe, N. Iwasad, S. Kimc, N. Kobayashic, T. Kobayashid, Y. Kondoe, T. Kubo, K. Kusaka, F.M. Marquésb, Y. Matsudaf, R. Minakatae, T. Motobayashi, T. Murakamif, T. Nakamurae, S. Nishie, S. Ogoshie, J. Ohnishi, N.A. Orrb, H. Otsu, T. Sakoc, H. Sakurai, H. Sato, Y. Satourc, K. Sekiguchid, Y. Shimizu, H. Suzuki, K. Takahashid, H. Takeda, S. Takeuchi, R. Tanakac, T. Teranishig, Y. Toganoe, and K. Yoshida

RIKEN Nishina Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
aInstitut für Kernphysik, TU Darmstadt, D-64289, Darmstadt, Germany
bLPC-Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, F-14050, Caen Cedex, France
cDepartment of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea
dDepartment of Physics, Tohoku University, 2-1 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan
eDepartment of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan
fDepartment of Physics, Kyoto University, Kyoto 606-8502, Japan
gDepartment of Physics, Kyushu University, Higashi, Fukuoka 812-8581, Japan

kyoneda@riken.jp

We constructed a new spectrometer in RIKEN RI Beam Factory, called SAMURAI (Superconducting \textbf{A}nalyzer for \textbf{M}Ulti-particles from \textbf{R}Adio-\textbf{I}sotope beams). SAMURAI consists of a large superconducting dipole magnet\cite{1} and various types of particle detectors. SAMURAI is characterized by a large momentum- and angular- acceptance for particles emitted in fast RI beam reactions, and hence serves as a useful tool for experiments requiring multiparticle coincidence measurements. SAMURAI can be used in a variety of experimental studies such as breakup reactions, knockout reactions, polarized-deuteron-induced reactions, and multi-particle fragmentation. Combined with the high-intensity RI beams available at RIBF, SAMURAI facilitates studies on unbound states in unstable nuclei, enabling investigations that have been out of our experimental reach so far. The construction of SAMURAI was completed in February 2012, and the operation started in March 2012. Breakup measurements of light ions were carried out as a first series of experiments in May 2012. In this talk, this new spectrometer is introduced, including the design concept and capability of the spectrometer obtained as the preliminary results of the measurements so far. Also, some selected physics subjects to be covered with SAMURAI in the future research activities are discussed.