Hyperon-hyperon interactions based on quark-model baryon-baryon interactions

K. Fukukawa, E. Hiyama

RIKEN Nishina Center, Saitama 351-0198, Japan

fukukawa@riken.jp

Compared with nucleon-nucleon (NN) and hyperon-nucleon (YN) interactions, we have a lot of ambiguity about hyperon-hyperon (YY) interactions since there is no scattering data. In order to understand the properties of LL interactions, it is planned to perform the systematic search of $\Lambda\Lambda$ hypernuclei at the J-PARC facility. The purpose of this work is to construct the YY interaction based on the constituent quark model and to study the structure of $\Lambda\Lambda$ hypernuclei such as $^6_{\Lambda\Lambda}\text{He}$ ($= \alpha + 2\Lambda$) and $^{10}_{\Lambda\Lambda}\text{Be}$ ($= 2\alpha + 2\Lambda$) through the three- and four-body calculations using Gaussian expansion method (GEM) [1], respectively. These hypernuclei are very good tests for $\Lambda\Lambda$ interactions since they were already observed.

The quark-model baryon-baryon (QM BB) interactions developed by Kyoto-Niigata group have achieved an accurate description of NN and YN experimental data [2]. QM BB interactions are constructed in the framework of resonating-group method (RGM) for two three-quark clusters. One of the main feature of QM BB interactions is the treatment based on the SU_6 spin-flavor symmetry. This symmetry governs broad features of BB interactions in each channel. The lattice QCD calculation [3] gives consistent results with those predicted by QM BB interactions. These QM BB interactions, FSS and fss2, have been successfully applied to light ordinary nuclei, hypernuclei ($^3\Lambda\text{H}$, $^3\Lambda\text{H}$ [4], $^9_{\Lambda\Lambda}\text{Be}$ [5] and $^6_{\Lambda\Lambda}\text{He}$ [6]) and the nucleon-deuteron scattering system [7] through Faddeev calculations.

However, the quark structure of the baryon makes QM BB interactions hard to deal with on the applications to more complex systems. From the RGM formalism, QM BB interactions are nonlocal and have the linearly energy dependent term. The energy dependence is eliminated by the off-shell transformation [8]. We have already constructed the energy-dependent nonlocal Gaussian potential [9] based on the QM NN interaction fss2 [10]. We are now constructing the energy-independent version of this Gaussian potential, extending to YN and YY channels and plan to apply it to GEM calculations for the light $\Lambda\Lambda$ hypernuclei.