Evaluation of atom-environment interaction based on decoherence of sodium atom interferometry

Keisuke Nakamura and Atsuo Morinaga

Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan

j6212701@ed.tus.ac.jp

Recently, it has been discussed whether one can access the spacetime fluctuation which comes from quantum gravity through measurement of the decoherence ρ of atom interferometer (AI). Mang and co-authors derived the following equation $\rho = 1/3\lambda^3 (M/M_p)^2(T/T_p)$ where λ is a cutoff parameter which defines a scale $\ell = \lambda L_P$ (L_P is Plank length) that the spacetime fluctuation reaches [1-2]. As an example, they estimated $\lambda \geq 1890$ using the ρ of the cesium AI experiment [3]. Of course, the decoherence must be affected due to other atom-environment interactions. Therefore, it is necessary to remove them in order to evaluate λ accurately. We examined several sources of decoherence using the cold sodium AI (Fig. 1). As a result, we found that main source is a non-uniform magnetic field, and the theoretical curve (solid curve) based on the width of Rabi spectrum was in good agreement with the experimental values (Fig. 2).

Fig. 1. Ramsey fringes of sodium AI. Separation time $T=0.1$ms. Visibility $V=0.69$. Fig. 2. Decoherence of sodium AI. Decoherence $\rho = 1 - V(T)/V(1)$.