Asymptotic properties of energy spectra for high-energy cascade electron and photon in strong magnetic fields

Laboratory of Information Science, Okayama Shoka University, Japan
αDepartment of Fundamental Science, Okayama University of Science, Okayama 700-0005, Japan
βDepartment of Natural Sciences, Kawasaki Medical School, Kurashiki 701-0192, Japan
cThe Institute of Space and Astronomical Science, JAXA, Sagamihara 252-5210, Japan

nakatuka@olive.plala.or.jp

Energy densities, \(\pi(E, t) \) and \(\gamma(E, t) \), for high-energy cascade electron and photon show the ratio of \(D \) to \(C(1) \) after enough penetration through strong magnetic fields, thus we have \(\pi(E, t) = \frac{D}{D+C(1)} \frac{\nu(v, t)}{E_0} \) and \(\gamma(E, t) = \frac{C(1)}{D+C(1)} \frac{\nu(v, t)}{E_0} \), where \(\nu(v, t) \) denotes the sum of \(\pi(E, t) \) and \(\gamma(E, t) \) and \(v \) the ratio of \(E \) to the incident energy, \(E_0 \). Then \(\nu(v, t) \) is determined from the diffusion equation

\[
\frac{\partial \nu(v, t)}{\partial t} = -\frac{\nu(v, t)}{v^{1/3}} \int_0^1 \eta(u) du + 2 \int_0^1 \frac{\nu(v/u, t)}{(v/u)^{1/3}} \eta(u) \frac{du}{u},
\]

with \(\eta(u) = \frac{D}{D+C(1)} \psi(u) + \frac{C(1)}{D+C(1)} \phi(1-u) / u \). We can solve the equation by asymptotic expansion of \(\nu(v, t) \sim v^{-5/3} \sum_{k=0}^{\infty} \frac{\nu_k(x)}{k!} v^{k/3} \), where \(x = \eta_0 t \) and \(\eta_0 = \tilde{\eta}(0) \) with \(\tilde{\eta}(s) \equiv \int_0^1 u^s \eta(u) du \). From the limiting properties at \(v \to 0 \) and the decrease of total particle energy, we have

\[
\nu_0'(x) = \left\{ 2\tilde{\eta}(1/3)/\eta_0 - 1 \right\} \nu_1(x), \quad \nu_1'(x) = \left\{ 2\tilde{\eta}(1/3)/\eta_0 - 1 \right\} \nu_2(x)/2, \quad \nu_2'(x) = \nu_3(x)/3,
\]

where \(e^{-\eta_0 t} \) denotes survival energy of the incident particle. Applying Laplace transforms, we get the solution for \(\nu_k(x) \)'s, so that for \(\pi(E, t) \) and \(\gamma(E, t) \). Energy density and transition curve of electron for photon incident shower, so obtained, are indicated in Figs. 1 and 2, compared with the results derived by the numerical integration method [2]. Thus we find the asymptotic expansion well explain the properties of cascade in strong magnetic fields of enough penetration about \(t > 1 \).

Figure 1: Energy spectra derived by asymptotic expansion (dots) and by numerical integration method (lines).

Figure 2: Transition curves derived by asymptotic expansion (dots) and by numerical integration method (lines).

1Retired now.