Electromagnetic showers in strong magnetic fields derived analytically assuming simplified cross-sections

Laboratory of Information Science, Okayama Shoka University, Japan
Department of Fundamental Science, Okayama University of Science, Okayama 700-0005, Japan
Department of Natural Sciences, Kawasaki Medical School, Kurashiki 701-0192, Japan

nakatuka@olive.plala.or.jp

Diffusion equation of energy spectra for high-energy cascade electron and photon, \(\pi(E, t) \) and \(\gamma(E, t) \), in strong magnetic fields [1] can easily be solved if we simplify the cross-sections of radiation and pair production, \(q\phi(W/E) dW/E^{4/3} \) and \(q\psi(E/W) dE/W^{4/3} \), by taking \(\phi(W/E) = \psi(E/W) \approx a \). Mellin transforms, diagonal matrix, and residues were applied. Then \(\pi(E, t) \) is expressed as

\[
E\pi(E, t) = \frac{2}{3}(W_0/E)^{-1}\left(720 - 1800x + 1200x^2 - 300x^3 + 30x^4 - x^5\right)e^{-x}/360 \\
+ (2/3)(W_0/E)^{-2/3}x^2(360 - 480x + 180x^2 - 24x^3 + x^4)e^{-x}/72 \\
+ (2/3)(W_0/E)^{-1/3}x^3(120 - 90x + 18x^2 - x^3)e^{-x}/36 \\
+ (2/3)x^4(30 - 12x + x^2)e^{-x}/36 + (2/3)(W_0/E)^{1/3}x^5(6 - x)e^{-x}/72 \\
+ (2/3)(W_0/E)^{2/3}x^6e^{-x}/360 + (2/3)(W_0/E)^{-1}x^3e^{-y}/6 \\
+ (2/3)(W_0/E)^{-1/3}x^2(3 - y)e^{-y}/3 + (2/3)(W_0/E)^{-1}x(6 - 6y + y^2)e^{-y}/6
\]

for gamma-incident shower of energy \(W_0 \), where \(x = at \) and \(y = at(W_0/E)^{1/3} \). Derived spectra and transition curves are indicated in Figs. 1 and 2. The solution will be helpful to investigate properties of the shower in strong magnetic fields, as \(E^{-5/3}dE \) spectra at low energy limit and/or \((W_0/E)^{2/3} \)-dependence of the peak value of transition curve are confirmed in the solution.

Figure 1: The analytical (lines) and the numerical integration (dots) results for energy spectra of electron at \(t \) of 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, from bottom to top.

Figure 2: Analytical results of transition curve of electron for gamma-initiated cascades. Four curves show \(W_0/E \) of \(10^2, 10^4, 10^6, 10^8 \), from bottom to top.

1Retired now.