Optical, dosimetric, and scintillation properties of MgB$_2$

Y. Futami, T. Yanagida, Y. Fujimoto, H. Ogino

1 Kumamoto National College of Technology, Kumamoto 866-8501, Japan.
2 Kyushu Institute of Technology, Fukuoka 808-0196 Japan.
3 The University of Tokyo, Tokyo 113-8656, Japan

futami@kumamoto-nct.ac.jp

MgB$_2$ had attracted much attention because of its high temperature superconductivity [1,2] so that various studies were conducted as a superconducting material. In this study, we studied luminescence properties and radiation responses of MgB$_2$ as a scintillation and dosimetric material. The interesting feature of MgB$_2$ is a chemical composition consisting of light elements, and is quite suitable for dosimeter application which requires biological tissue-equivalent against X and γ-ray exposure. Furthermore, 10B has a high cross section with the thermal neutrons. Therefore MgB$_2$ is potentially applicable for both high energy photon and neutron detectors. To apply radiation detectors, basic luminescence properties and radiation responses should be investigated.

Figure 1 shows X-ray excited radioluminescence spectra of MgB$_2$. The emission peak appeared at 450 nm. Figure 2 exhibits thermally stimulated luminescence (TSL) glow curves of MgB$_2$ after X-ray exposure. Glow peaks were observed in at 250 and 350 $^\circ$C and we confirmed that MgB$_2$ really acted as a dosimeter. In the conference, basic luminescence, scintillation and dosimetric properties will be presented.