Effects of plasma incident angle of dust production due to interactions between hydrogen plasmas and carbon wall

Mizuki Tateishia, Kazunori Kogaa, Giichiro Uchidaa, Kunihiro Kamatakib, Daisuke Yamashitaa, Hyunwoong Seoa, Naho Itagakia,c, Masaharu Shiratania, Naoko Ashikawad, Suguru Masuzakid, Kiyohiko Nishimurad, Akio Sagarad, the LHD Experimental Groupd, Sven Bornholdte, Holger Kerstene

aFaculty of Information Science and Electrical Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
bFaculty of Arts and Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
cPRESTO JST, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
dNational Institute for Fusion Science, 322-6 Oroshi-cho Toki-cit Gifu, 509-5292, Japan
eInstitute of Experimental and Applied Physics, CAU Kiel, Leibnizstr. 11-19, D-24098 Kiel, Germany

m.tateishi@plasma.ed.kyushu-u.ac.jp

Dust formation in fusion devices is of critical importance because of safety and operational issues [1-3]. Here we have examined effects of a plasma incident angle toward a carbon wall on dust production to clarify the dust formation mechanisms.

Experiments were carried out with a helicon discharge reactor described elsewhere [2]. In this reactor, dust particles were generated due to interactions between hydrogen helicon discharge plasmas and a graphite target. Total discharging period was 600 s. Dust particles were collected with dc biased Si substrates of 15x10 mm2 set on the reactor wall at 110 mm below the graphite target. An area density of the collected dust particles on the Si substrates were measured with a SEM. The dust flux toward the substrates from the graphite target was deduced from the area density and the discharging period.

Collected dust particles can be classified into two kinds: spherical particles and flakes. Figure 1 shows dependence of the dust flux on a plasma incident angle θ. The dust fluxes of spherical particles and flakes for $\theta = 45^\circ$ are much higher than the fluxes for $\theta = 0$ and 60°. These results indicate that the dust generation rate strongly depends on the plasma incident angle.

References