Time-resolved evolution of low frequency oscillation in the edge plasma at L-I-H transition of HL-2A Tokamak

J.Cheng1, J.Q.Dong1,2, L.W.Yan1, K. Itoh3, M.Xu1, W.Y.Hong1, Z.H.Huang1, K.J. Zhao1,4, W.L.Zhong1, D.L.Yu1, D.F. Kong5, T. Lan5, A. D. Liu5, X.M. Song1, Q.W. Yang1, X.T. Ding1, X.R. Duan1, Yong Liu1 and HL-2A team

1Southwestern Institute of Physics, P. O. Box 432, Chengdu, Sichuan 610041, China
2Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027, China
3National Institute for Fusion Science, Orosi-cho, Toki 509-5292, Japan
4WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon, Korea
5Department of Modern Physics, University of Science and Technology of China, Hefei, China

Triggering mechanism of L-H transition in fusion device has been a crucial issue since the first H-mode was found on the ASDEX [1]. Due to the rapid L-H transition, it is difficult to find a causal relationship for explaining L-H transition. Theoretically, a predator-prey mode was proposed by Kim-Diamond [2], which predicts L-H transition should pass through an intermediate limit-cycle oscillation (or intermediate confinement phase, labeled as I-phase) if input power gradually rises. Experimentally, this oscillation was widely observed in AUG [3], DIII-D [4], TJ-II [5], EAST [6], NSTX [7], etc. The interaction of shearing flow and turbulence in I-phase and the critical role of limit-cycle oscillation (LCO) on L-H transition were studied in detail. The study of LCO time-resolved evolution in density, potential, electron pressure gradient, and energy transfer rate, etc, at L-I-H transition, is helpful to understand the LCO nature and clarify the hidden physics mechanisms for L-H transition.

In this paper, we report the time-resolved evolution of LCO with 2-3 kHz at L-I-H transition, measured by a four-step Langmuir probe array in the HL-2A edge plasma. In L-phase, there is weak correlation between radial electric field (Er) and turbulence amplitude. In I-phase, Er and density envelope (20-100 kHz) have a limit-cycle relation, and the former lags the latter about $\pi/2$, consistent with predator-pray model [2]. Meanwhile, the Reynolds stress is modulated by 2-3 kHz oscillation. Turbulence is periodically suppressed, where energy is transferred from turbulence to the low frequency flow (<5 kHz). When plasma enters H-mode, the LCO disappears, and a higher frequency electrostatic oscillation appears with $f = 55$-60 kHz and m~15-18, which has kinetic ballooning mode characteristic.

References

