An open system that has internally ordered structures, thereby keeping much lower entropy state than its environment, is made possible with a help of injection of negentropy from and simultaneous rapid emission of increased entropy to external environment. Thereby, the ordered structure can be maintained for a time period much longer than the diffusion time scale. A living organism has a highly ordered structure built upon the memory stored in DNA. The ordered structure is maintained by intake of low entropy energy and/or photons and forced discharge of increased internal entropy. The earth can maintain livable environment with the help of injection of negentropy from solar radiation at visible wavelengths and emission of increased entropy in the form of black body radiation at infrared wavelengths. The zonal flow in the Jovian atmosphere is produced by inverse cascade of atmospheric turbulence and condensation of the energy spectrum into appropriate wave numbers. The extremely stable zonal flow structure may be maintained by continuous injection of gravitational energy and discharge of entropy to its environment. These examples show that highly ordered state (low entropy state) in an open system is maintained by continuous injection of negentropy and simultaneous effective discharge of increased entropy to external environment. A fusion device that requires internally ordered structure is no exception and it should be designed so that it allows a rapid entropy discharge than a diffusion rate. A design based on a classical MHD equilibrium and adiabatic dynamics (which conserves entropy) is not appropriate in this regard. I present an example where the ordered structure of confined plasma with zonal flow in a toroidal device can be maintained by a forced discharge of the entropy in the form of electromagnetic (Alfven Wave) radiation.