Anomaly detection during plasma etching process by high-sensitivity characteristic impedance monitoring

T. Motomura, Y. Kasashima, F. Uesugi, H. Kuritaa and N. Kimuraa

Measurement Solution Research Center, National Institute of Advanced Industrial Science and Technology, Saga 841-0052, Japan
aRF Measuring Unit Business Division, ADVANTEST Corporation, Gunma 370-0718, Japan

e-mail address: t.motomura@aist.go.jp

High stability of plasma etching process is needed for manufacturing of semiconductor products. We have developed a method for high-sensitivity characteristic impedance (CI) monitoring for anomaly detection during plasma processing [1]. The time-delay-free and practical CI monitoring is achieved by using a directional coupler and newly developed vector processing equipment, Cross Domain AnalyzerTM. The system can simultaneously measure time variations of CI and higher-order frequency components of RF power when plasma is generated.

Figure 1 shows time variations of absolute values of CI, $|Z|$, and the signal of viewing port style plasma probe (VP probe) during etching process. VP probe can measure transient response of the electric potential on the inner glass surface [2]. When wafer fluttering occurs around 19 seconds, abrupt changes in $|Z|$ and signal of VP probe are clearly observed. This result suggests that the change in sheath capacitance causes the change in $|Z|$.

Our anomaly detection system using CI monitoring is useful for detection of sudden change such as wafer fluttering during plasma processing because of its sensitivity.