Laboratory experiments to study astrophysical collisionless shocks

Y. Sakawa, Y. Kuramitsu, T. Morita, T. Ishikawa, Y. Yamaura, T. Moritaka, T. Sano, R. Shimodaa, K. Tomitaa, K. Uchinoa, S. Matsukiyoa, A. Mizutab, N. Ohnishic, N. Woolseyd, G. Gregorie, A. Ravasiof, A. Pelkaf, M. Koenigf, Y. Lig, A. Spitkovskyh, N. L. Kuglandi, J. S. Rossi, H.-S. Parkj, B. Remingtoni, and H. Takabe

\textit{Institute of Laser Engineering, Osaka University, Suita 565-0871, Japan}
aInterdiscipl. Grad. School of Eng. and Sci., Kyushu Univ., Fukuoka 816-8580 Japan
bRIKEN, Computational Astrophysics Lab., 2-1 Osawa, Wako 351-0198, Japan
cDepartment of Aerospace Engineering, Tohoku University, Sendai 980-8576 Japan
dDepartment of Physics, University of York, Heslington, YO10 5DD, UK
eDepartment of Physics, Oxford University, Oxford, OX1 3PU, UK
fLULI, Ecole Polytechnique, 91128 Palaiseau, France
gInstitute of Physics, Chinese Academy of Sciences, China
hDepartment of Astrophysical Sciences, Princeton University, Princeton NJ, USA
iLawrence Livermore National Lab, 7000 East Ave, Livermore CA, USA

sakawa-y@ile.osaka-u.ac.jp

Collisionless shocks are considered to be sources of high-energy particles or cosmic rays, and occur when a coulomb mean-free-path is longer than the shock-front thickness. In such plasmas wave-particle interactions and collective effects play an essential role in the shock formation. In addition to local observations of spaces plasmas by spacecraft and global emission measurements of astrophysical plasmas, a laboratory experiment can be an alternative approach to study the formation of collisionless shocks. In this paper, we investigate the formation of collisionless shocks in counter-streaming plasmas produced by large-scale intense lasers, such as Gekko XII HIPER (Japan), LULI2000 (France), and OMEGA (USA). Shock structures are measured by optical diagnostics (interferometry, shadowgraphy, self-emission); collective Thomson scattering diagnostics provide electron density, electron and ion temperatures, flow velocity, and Mach number in the upstream and downstream regions of a shock; and electric and/or magnetic fields are obtained by proton-radiography. We also investigate experimental plans to demonstrate the formation of Weibel-instability mediated collisionless shocks using the NIF (USA).