Monte Carlo shell model calculations of neutron-rich nuclei

Y. Tsunodaa, T. Otsukaa, b, c, N. Shimizub, M. Honmad, Y. Utsunoe

a Department of Physics, University of Tokyo, Tokyo 113-0033, Japan
b Center for Nuclear Study, University of Tokyo, Tokyo 113-0033, Japan
c National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan, USA
d Center for Mathematical Sciences, University of Aizu, Ikki-machi, Aizu-Wakamatsu, Fukushima 965-8580, Japan
e Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan

ytsunoda@nt.phys.s.u-tokyo.ac.jp

In shell-model calculations in nuclear physics, we calculate many-body eigenstates in a model space composed of a finite number of single-particle states. In conventional shell-model calculations, eigenstates are obtained by the direct diagonalization of a Hamiltonian matrix in a finite-dimensional many-body space. Since the direct diagonalization is impossible in a large model space, we use the Monte Carlo shell model (MCSM) \cite{1}. In the MCSM, we approximate states with linear combinations of angular-momentum- and parity-projected deformed Slater determinants (MCSM bases) and diagonalize the Hamiltonian matrix in a small subspace spanned by the MCSM bases. Since numerical integration in angular-momentum projection is the most time-consuming part, we calculate on each mesh point parallelly in supercomputers such as the K computer.

We show calculated results of neutron-rich nuclei in the N ~ 40 region in \textit{pfgd_5} model space, which consists of the 0f_{7/2}, 1p_{3/2}, 0f_{5/2}, 1p_{1/2}, 0g_{9/2} and 1d_{5/2} single-particle orbits.