日本物理学会

第71回年次大会(2016年)プログラム (東北学院大学 泉キャンパス)

期 日 2016年3月19日(土)~3月22日(火)

場 所 東北学院大学 泉キャンパス (宮城県仙台市泉区天神沢二丁目 1-1)

電 話 090-5424-9718 (大会本部臨時電話。年次大会会期中のみ使用可。)

URL http://jps2016.takedarts.jp/index.html

開催領域 素粒子論領域 素粒子実験領域 理論核物理領域 実験核物理領域 宇宙線・宇宙物理領域 ビーム物理領域

領域 1:原子分子・量子エレクトロニクス・放射線 領域 2:プラズマ

領域 3:磁性 領域 4:半導体,メゾスコピック系・量子輸送

領域 5: 光物性 領域 6: 金属(液体金属・準結晶)・低温(超低温・超伝導・密度波)

領域 7:分子性固体 領域 8:強相関電子系

領域 9:表面・界面,結晶成長 領域 10:構造物性(誘電体,格子欠陥, X線・粒子線,フォノン)

領域 11:物性基礎論・統計力学・流体物理・応用数学・社会経済物理 領域 12:ソフトマター物理・化学物理・生物物理

領域 13: 物理教育・物理学史・環境物理 物理と社会

論文賞表彰式. 総合講演

会場:イズミティ 21 大ホール(1,450 名)(仙台市泉区中央 2-18-1)

*地下鉄南北線泉中央駅下車約3分 (大学への臨時直通バス乗り場近く)

期日:2016年3月20日(日)9:00~11:55(開場8:45)

会長挨拶、実行委員会役員紹介および第21回論文賞表彰式 9:00~9:30

1. 会長挨拶

2. 年次大会実行委員会役員紹介

3. 第21回日本物理学会論文賞表彰式

休憩 9:30~9:40

総合講演 9:40 ~ 11:55

1. 「グラフェンと関連原子層物質の物理的興味 | 60分 座長:藤井保彦(会長)

安藤恒也(東京工業大学理工学研究科物性物理学専攻)

休憩 10:40~10:55

座長:柴田利明(副会長)

2. 「ニュートリノ振動とニュートリノの質量 - スーパーカミオカンデの観測から -」 60 分

梶田隆章 (東京大学宇宙線研究所)

参加者は必ず総合受付で参加登録をしてください。(除:事前参加登録をされた方)。

現地での登録方法は2種類(Webからのクレジットカード払い, 現金払い)あります。

登録後、参加票を(非会員の方は別冊プログラムも)お受取りください。参加票には各自氏名と所属を記入の上、会期中見える位置につけご参加ください。

参加票を忘れて現地で再発行する場合は、手数料300円をいただきます。

- ○参加登録方法および参加費は次のとおりです。
 - ・Web からのクレジットカード払い (割引あり):

予め次の URL にアクセスをし,Web 上でクレジットカードによる決済を完了した後,総合受付にお越しください。

URL:http://www.toyoag.co.jp/jps/index.html

会員〔一般および賛助会員 6,500 円, 学生・シニア会員 3,750 円〕(不課税)

非会員〔一般 7,500 円, 学生 5,000 円〕(消費税込)

・ 現金払い: 会員 〔一般および賛助会員 7,000 円, 学生・シニア会員 4,000 円〕 (不課税)

非会員〔一般 8,000 円, 学生 6,000 円〕(消費稅込)

- ○参加登録受付場所:総合受付(ただし,最終日の13時00分以降は大会本部)
- ○参加登録受付時間:8時30分~16時00分(3月19日~22日,ただし3月20日は12時から開始)

注:Webからのクレジットカード払いによる登録受付は最終日の12時まで

○お願い :参加費および概要集のお支払いは、上記 Web からのクレジットカード払いをご利用ください。

なお、現金払いの場合は、釣り銭のないようにお願いします。

○注 意 :参加される会員の方は、会誌3月号と同時に発行されるプログラム(増刊号)を忘れずにお持ち下さい。

会員には、参加登録の際、プログラムの配布はいたしません。プログラムをご希望の場合は有料(1冊 500 円)となります。

また、部数に限りがあるため、ご希望に添えない事もありますので、予めご承知おき願います。

※ お知らせ : 3月20日(日)は、礼拝のため正午まで入構できません。

目 次

臨時電話,開催領域,論文賞表彰式,総合講演,参加登録の案内	1
目次,実行委員会,謝辞,講演概要集(Web アクセス権および記録保存用 DVD 版)頒価	2
参加者への案内,講演者への案内	3
交通案内	4
会場案内	5
会場配置図	7
市民科学講演会,Jr. セッション,設立 70 周年・創立 140 周年記念展示会	9
日程表	
領域別使用会場一覧表,シンポジウム一覧表	
招待講演一覧表,企画講演一覧表,チュートリアル講演一覧表	
若手奨励賞受賞記念講演一覧表	
インフォーマルミーティング一覧表	
領域委員会 素核宇ビーム領域・物性領域プログラム小委員会 委員一覧表	19
領域運営委員一覧表	
付設展示会	
講演プログラム(日付順に掲載しています)	22
19 $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
登壇者索引	
Jr. セッションプログラム	141

実 行 委 員 会

委 員 長 須藤彰三 (東北大院理) 副委員長 星 善元(東北学院大工) 寺内正己 (東北大多元研) 菜嶋 理(東北学院大工) 委 土井正晶(東北学院大工) 桑野聡子(東北学院大工) 岡田宏成 (東北学院大工) 小澤哲也(東北学院大工) 鈴木仁志 (東北学院大工) 山田 顕(東北学院大工) 根市一志 (東北学院大経営) 牧野悌也 (東北学院大教養) 松本章代 (東北学院大教養) 村上弘志 (東北学院大教養) 乙藤岳志(東北学院大教養) 菅原 研(東北学院大教養) 坂本泰伸 (東北学院大教養) 武田敦志(東北学院大教養) 吉澤雅幸 (東北大院理) 大野 裕(東北大金材研) 玉江京子 (東北大ニュートリノ) 福田善之 (宮城教育大教育)

謝辞

本大会開催にあたり, 東北学院大学および仙台観光コンベンション協会より多大な協力を頂きました。ここに感謝いたします。

講演概要集(Web アクセス権および記録保存用 DVD 版)頒価 (消費税込み)

講演概要集には、素粒子論領域,素粒子実験領域,理論核物理領域,実験核物理領域,宇宙線・宇宙物理領域, ビーム物理領域,領域 1-13、物理と社会の全領域が掲載されています。

注意:講演概要集をご覧いただくには、必ず次の Web アクセス権または記録保存用 DVD 版をご購入ください。 Web アクセス権の閲覧期間は、2016 年 3 月 1 日 (火) から 1 年間です。 記録保存用 DVD 版は大会前には予めお手元には到着しません。発送は大会終了後となります。

Web からのクレジットカード払い(割引あり)の場合:

予め次の URL にアクセスをし、Web 上でクレジットカードによる決済を完了した後、総合受付にお越しください。

URL: http://www.toyoag.co.jp/jps/index.html

Web アクセス権のみの購入1,250 円Web アクセス権と記録保存用 DVD 版購入1,750 円記録保存用 DVD 版のみの購入1,250 円

現金 (現地) での支払いの場合:

釣り銭のないようにお願いします。

Web アクセス権のみの購入1,500 円Web アクセス権と記録保存用 DVD 版購入2,000 円記録保存用 DVD 版のみの購入1,500 円

参加者への案内

1) 講演時間および討論時間

- a. 原著講演 (口頭発表) ……講演時間は一律 10 分, 討論時間は一律 5 分です。
- b. シンポジウム・招待・企画・チュートリアル講演…… 講演時間はプログラム中の題目の後に記載($5 \sim 10$ 分の討論時間を含む)
- c. ポスターセッション (展示発表) ……講演時間は 120 分, 展示時間は講演時間を含む 240 分です。

2) ポスターセッション (PS) を行う領域

核物理合同 (学部学生), 領域 3, 領域 4, 領域 5, 領域 6, 領域 8, 領域 9, 領域 10, 領域 11, 領域 12

3) プログラムの記載方法について

- a. 英語で行われるものは、講演番号の左肩に[●]印を付記 してあります。
- b. 共同講演については、登壇者は先頭に記載してあります。ただし、登壇者が2番目以降の記載になる場合にだけ氏名の左肩に[©]印をつけてあります。

4) 掲示板について

総合受付に掲示板を設置し、講演取消、伝言、落し物等の案内(すべてビラ掲示)をします。是非ご覧ください。 なお、詳しくは本部までお問い合せください。

5) 講演内容の撮影等について

講演内容の、写真撮影・動画撮影・音声録音については、 原則、禁止といたします。必要な場合には、予め登壇者 および座長に許可を得てください。

6)「講演取消」について

- a. 冊子プログラムに「取消(以下,講演時間繰り上げ)」 と記載のあるものについては,セッションの前半・後 半内でそれ以降の講演時間を繰り上げます。
- b. 冊子プログラムに講演が記載されていて、本冊子発刊 以降に「講演取消」になったものについては、講演時 間の繰り上げは行いません。なお、当該取消講演は、 総合受付・当該会場にビラ掲示をしてあります。

7) 大会会場における大会運営以外の掲示物等について

a. 大会運営に関するもの以外は、総合受付付近の指定された場所(「ご自由にお取りください」コーナー)でのみの掲示とし、希望者は事前に事務局に連絡をしてください。なお、掲示物の残部については、原則、最終日の総合受付終了後廃棄します。

注意:上記以外の講演会場,休憩室等への掲示は,一切認めません。

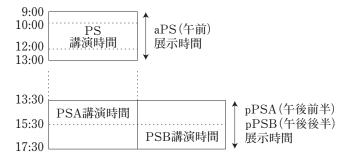
b. 無人販売のような形式をとるものについては、原則、お断りいたしますが、希望者は事前に事務局にご相談ください。なお、お認めした場合も、販売は総合受付開設時間内に限り、また売上金については、各自責任をもって毎日管理をしていただきます。

講演者への案内

1) 講演者の持ち時間

1) 口頭発表

講演時間(10分)に討論時間(5分)を加えた時間です。


2) ポスターセッション (PS) 展示時間は 240 分, うち講演時間は 120 分。

2) 講演時間および討論時間の合図

1) 口頭発表

72 12 = F :	
講演者への合図	ブザー
講演開始時	
2/3経過時	3回鳴る
講演終了時	5回鳴る
持ち時間終了時	継続して鳴る

2) ポスターセッション

準 備:展示時間開始時に準備を始めてください。

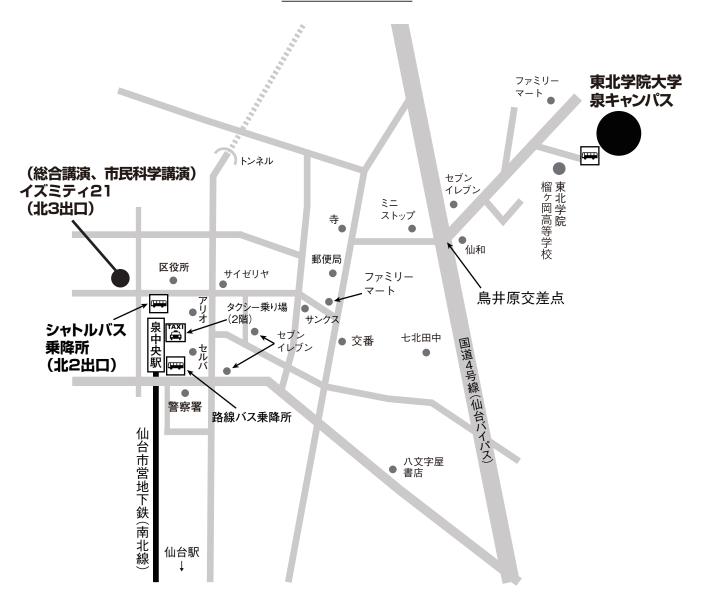
講演開始時:30秒ほどベルが鳴ります。 講演終了時:1分ほどベルが鳴ります。

片 付 け:展示時間終了時までに展示物を片付けてください。

3)液晶プロジェクター

- a. 全会場に配置します(除: PS 会場)。ノート PC はご自身でご用意ください。使用はセルフサービスです。接続及び表示テストは休憩時間に行いセッションが遅れることのないようにしてください。
- b. 接続コードはミニ D-sub15 ピンの標準的なものを用意しています。
- ※ 相性等の問題により映写できない場合でも本会及び実行 委員会は責任を負いかねますので、必ず代替策による バックアップをご準備ください。

4) ポスターセッションの実施方法


- a. 会場には 1 講演につき幅 0.9m× 高さ 1.8m の展示板 2 面 を用意します。展示板は下図の様に 120° の角度で接続されます。
- b. 展示板左上部に講演番号が記されています。各講演者は 自分の講演番号の場所に(講演番号通知メール参照) ポスターを展示してください。
- c. 発表者は展示板に貼り出すポスターを創意をもって展示してください。また、展示板上部には講演題目、講演者 氏名、所属を記入した用紙を貼ってください。なお、その際に展示板左上部の講演番号をふさがないようにご注意ください。
- d. ポスターセッションパネルに貼り出すポスターはプッシュ ピンで止めてください。

なお、プッシュピンは講演者各自で用意してください。

ポスター展示板の平面図

交 通 案 内

【地下鉄南北線泉中央駅から】

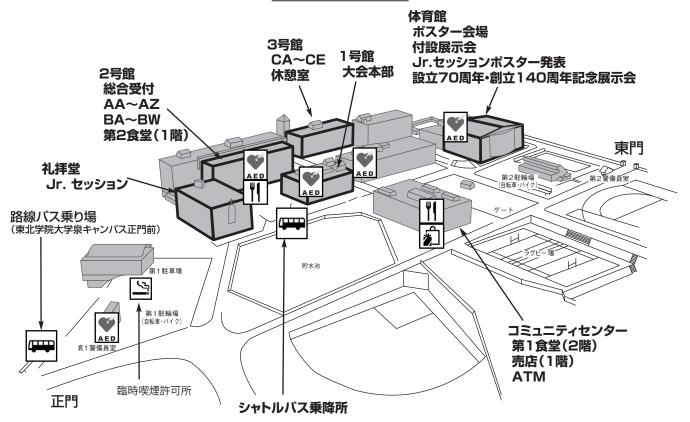
- ・シャトルバス(有料:片道300円)がご利用できます。乗り場は北2出口が最寄りです。
- ・路線バスは「東北学院大学泉キャンパス前」行き (4番のり場) にて 10 分程度です。 ※ 路線バスの停留所はシャトルバスと違い, 会場までは坂道で 5 分程度かかります。
- ・徒歩の場合は所要時間25分程度(国道4号線から登り坂が続きます)。
- ・総合講演, 市民科学講演が行われるイズミティ21は北3出口が接続しています。

【地下鉄南北線泉中央駅まで】

- ・仙台駅から:地下鉄南北線で15分。
- ・仙台空港から: 仙台空港アクセス線で JR 仙台駅まで 快速 17 分・普通 25 分, 地下鉄南北線に乗り換え。

【シャトルバス】

シャトルバスの運行間隔は以下の通りです。変更の可能性がありますので最新の情報はホームページをご確認ください。 「泉中央駅→年会会場」


(3/19, 21, 22 日) 7:45-10:00 5 分間隔, 10:00-13:00 30 分間隔

(3/20 日) 11:00-12:00 20 分間隔,12:00-13:30 5 分間隔,13:30-15:00 30 分間隔

[年会会場→泉中央駅]

11:30-16:30 60 分間隔,16:30-18:30 5 分間隔,19:00-20:00 10 ~ 30 分間隔

会 場 案 内

【総合受付・大会本部】

総合受付は2号館入り口ロビーに設置します。 大会本部は1号館3階に設置します。

【3月20日(日)午前中の入構不可について】

3月20日(日)は、礼拝などのため正午まで入構できませんのでご注意ください。

【傷病発生時】

大会本部にご連絡ください (総合受付にて取次げます)。

AED は、保健室・2 号館 2 階エレベータ前ホール・図書館入り口・正門警備室・体育館 2 階・運動場管理センター、の 6 箇所にあります。

【喫煙について】

キャンパス内は原則禁煙です。第1駐車場の臨時喫煙許可所でのみ喫煙可能です。

キャンパス周辺の公道等での喫煙も周辺の方々への迷惑となりますのでおやめください。

【昼食・売店について】

2号館に第2食堂、コミュニティセンターに第1食堂と売店(生協)があります。

	店名	場所	席数	営業時間
食堂	第1食堂	コミュニティセンター2階	5 4 0	19,20,22 日 11:00-14:00
	第2食堂	2号館1階	3 0 0	19,20,22 日 11:00-14:00
喫茶	リーベ	コミュニティセンター2階	9 6	19,21,22 日 11:30-14:00 20 日 12:00-14:00
売店	生協	コミュニティセンター1階	_	19,21 日 10:30-1 5:00 20 日 12:00-1 5:00 22 日 10:30-16:00

18:00 18:00

【インターネット接続】

無線 LAN の接続環境をご用意します。eduroam のアカウントをお持ちであればそちらで接続できます。(学会会場で手続きは不要です)。

お持ちでなければ大会期間中に会場内でのみ使用できるアカウントの情報を総合受付で提供致します。 (アクセスフィルタ等の利用制限がありますのでご注意ください)。

[ATM]

コミュニティセンターにゆうちょ銀行(平日 9:00-18:00, 土曜 9:00-17:00), 七十七銀行(平日 9:00-18:00), 仙台銀行(平日 9:00-18:00) の ATM があります。

【コピー機】

コミュニティセンター1階にあります。

【公衆電話】

2号館入り口ロビーと正門、東門にあります。

【駐車場】

一般参加者の駐車場は用意してありません。公共交通機関や泉中央駅からのシャトルバスをご利用ください。 シャトルバス乗降所は、泉中央駅では北2出口近く(駅と区役所の間の道路沿い)、会場では1号館前道路です。 交通案内図・会場案内図をご覧ください。

【車椅子での来場】

講演会場はすべて車椅子での入退館が可能ですが、ポスター会場(体育館 2 階)は階段しかありません。 ポスター会場へ移動の際は総合受付でご相談ください。

【託児室】

大会期間中、臨時の託児室を設置します。ご利用を希望される方は大会ホームページをご覧ください。

【市民科学講演会】

3月20日(日)に市民科学講演会をイズミティ21で開催します。中高生およびその教員を含む一般市民を対象とした講演会ですが、会員の方の来場も歓迎いたします。事前申込については大会ホームページをご覧ください。

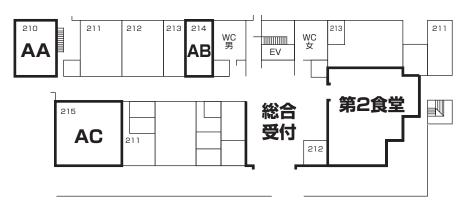
【Jr. セッションについて】

3月21日(月・祝)に中高生による物理学研究の発表会を礼拝堂および体育館で開催しますので、会員の皆様もどうぞ会場においで下さい(詳細は p.9 およびプログラムは p.141 以降参照)。

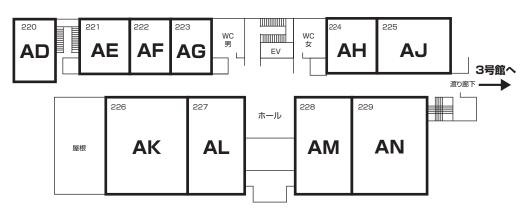
【設立70周年・創立140周年記念展示会】

日本物理学会は、今年が設立から 70 周年、来年は創立から 140 周年を迎えます。これを記念して、創立以来 139 年の歴史を、史料や物品を交えて紹介するとともに、設立以来 70 年間の各領域(現在 19 領域)の関係する分野での主たる研究ハイライトの紹介等を行います。来場者の皆様のご意見も反映できる「来場者参加型」展示を目指していますので、ご来場をお待ちしています。

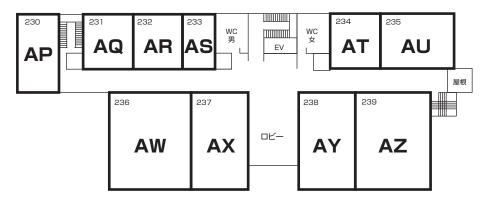
本会は 1877 年に前身の「東京数学会社」として創立され、その後「東京数学物理学会」(1884 年)、「日本数学物理学会」(1919 年)と改称して活動した後、1946 年に現在の「日本数学会」、「日本物理学会」とし分離独立(設立)しました(詳細は p.9 を参照)。

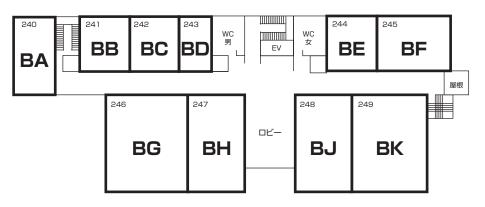

【付設展示会】

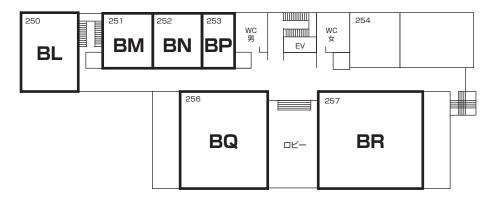
大会期間中,体育館2階にて企業等による展示会を開催します(詳細はp.21を参照)。

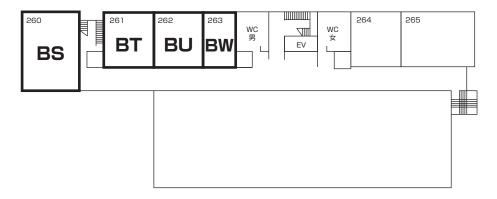

会場配置図

2 号館

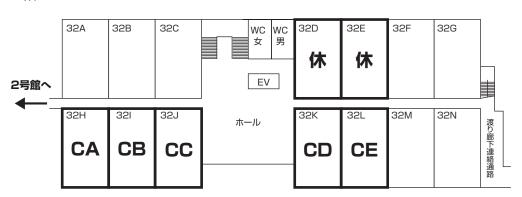

1階


2階


3階


4階

5階



6階

3 号館

2階

市民科学講演会

神岡の地下から探る宇宙の謎

〇日 時:2016年3月20日(日)13:30~16:10(開場13:00)

○ 会 場 : イズミティ 21 大ホール (仙台市泉文化創造センター)

○ プログラム:

1. 中畑雅行(東京大学宇宙線研究所神岡宇宙素粒子研究施設長)

[ニュートリノで探る素粒子と宇宙]

2. 神田展行(大阪市立大学大学院理学研究科教授)

「地下で測る宇宙のさざなみ~重力波検出実験КАGRA~」

3. 梶田隆章 (東京大学宇宙線研究所長)

「粒子線天文学への期待」

○ 定 員 :1,450 名 (先着順。ただし事前登録優先。)

○入場料:無料

○ 主 催 :日本物理学会,東北学院大学

○ 企画・運営:日本物理学会第71回年次大会実行委員会

○ 後 援 : 宮城県教育委員会, 仙台市教育委員会

○ 協 力 :特定非営利活動法人 natural science

Jr. セッション

〇 日 時 : 2016年3月21日 (月・祝) 8:55~16:50

○ 会 場 : 東北学院大学泉キャンパス礼拝堂および体育館

○ プログラム:141ページ以降を参照

〇 主 催 :日本物理学会

○ 共 催 : 高等学校文化連盟全国自然科学専門部

○ 後 援 :宮城県教育委員会,仙台市教育委員会

日本物理学会設立 70 周年・創立 140 周年記念展示会

日本物理学会は、今年が設立から70周年、来年は創立から140周年を迎えます。

これを記念して、創立以来139年の歴史を、史料や物品を交えて紹介するとともに

設立以来70年間の各領域(現在19領域)の関係する分野での主たる研究ハイライトの紹介等を行います。

来場者の皆様のご意見も反映できる「来場者参加型」展示を目指していますので、ご来場をお待ちしています。

本会は1877年に前身の「東京数学会社」として創立され、その後「東京数学物理学会」(1884年)、

「日本数学物理学会」(1919年)と改称して活動した後、1946年に現在の「日本数学会」、

「日本物理学会」とし分離独立(設立)しました。

〇 日 時 : 2016年3月19日(土)~22日(火)午前

○ 会場:東北学院大学泉キャンパス体育館(ポスターセッション.企業展示会会場)

○ 主 催 :日本物理学会

○ 企画・運営 : 日本物理学会学会史展示タスクフォース

○ 後 援 :日本物理学会物理学史資料委員会

日本物理学会 第71回年次大会(2016年)日程表 (東北学院大学泉キャンパス) 2016年3

2016年3月19日~22日

会場	#L/=	- 巫 口	人	3月19	日(土)	3月20	日(日)	3月21	日(月)	3月22	日(火)
場 名	教至	番号	数	午 前	午 後	午 前	午 後	午 前	午 後	午 前	午 後
	イズミ	ティ 21	1,450			9:00 ~ 11:55 論文賞表彰式, 総合講演 1	13:30~16:10 市民科学 講演会 9				
	体育館,	礼拝堂						8:55 ~ Jr. セッション (詳細は 141 ページ 以降に掲載)	~ 16:50 Jr. セッション (詳細は 141 ページ 以降に掲載)		
AA	2 号	館 210	93	実験核物理, 素粒子実験 測定器合同(I) 26	実験核物理, 素粒子実験 測定器合同 (II) 27		~ 16:45 実核,理核,素論, 素実,宇宙 暗黑物質探索 (I) 53	実核, 理核, 素論, 素実, 宇宙 暗黒物質探索 (II) 72	~ 16:45 実験核物理 _{測定器 (III)} 73	9:15 ~ 実核,理核,素論, 素実,宇宙 二重 β 崩壊 (I) 103	~ 14:45 実核,理核,素論, 素実,宇宙 二重β崩壊(II) 104
АВ	2 号	館 214	70	~ 12:45 理論核物理 中性子星 25	理論核物理 格子 QCD,核力 26		実験核物理 測定器 (I)	実験核物理 測定器 (II) 72	~ 15:00 理論核物理 中重核 (II) 71	~11:45 理 論核物理 重い核・ 中性子過剰核 102	~ 16:15 理論核物理 クォーク物質 102
AC	2 号	館 215	150	~ 12:15 理論核物理 少数系・ クラスター 25	~ 16:30 理論核物理 クラスター (II) 26		~ 16:30 理論核物理 高エネ 53	理論核物理 核反応·中重核 71	~ 15:30 実験核物理, 理論核物理 ハイソー療ストレンシネス៣ 74	理論核物理, 実験核物理 (©別欄體育工種(オン (1) 102	~ 16:00 理論核物理, 実験核物理 中間子生成 103
AD	2 号	館 220	208	10:45 ~ 領域 2 核融合プラズマ	~ 17:30 * 領域 2 核融合プラズマ		~ 16:30 「領域 2 , ビーム物理] 多階層結合シンポ 57	~ 11:55 * 領域 2 核融合プラズマ / 若手賞受賞講演 81	【領域 2】 プラズマ診断 シンポ 81	9:15 ~ 領域 2 核融合プラズマ 109	~ 15:15 [領域 2, 領域 13] プラズマ教育シンポ 110
AE	2 号	館 221	150	~ 12:15 領域 1 原子分子·放射線 / 放射線物理 31	~ 16:50 [領域 l, 領域 2, 実核] イオン蓄積シンポ 32		領域 2 核融合プラズマ 57	~ 10:30 領域 2 非平衡極限プラ 81	~ 16:15 領域 2 非平衡極限プラ / 核融合プラズマ 81	領域 2 プラズマ基礎 / プラズマ宇宙物理 109	13:15~16:30 領域 1 原子分子 108
AF	2 号	館 222	90	9:15 ~ 12:15 領域 10, ビーム物理 ミューオン・中性子・辟 45	13:45 ~ 16:15 領域 10, ビーム物理 ミューオン・中野・尉 45		~ 16:45 ビーム物理, 素粒子実験 ^{合同 A・ビーム源} 55	9:30 ~ 11:45 領域 10 誘電体 94	~ 16:15 領域 10 誘電体 95	~ 12:05 * 領域 10 電子線 117	13:15~16:15 素粒子論 格子 QCD:T=0
AG	2 号	館 223	90	11:30 ~ 素 粒子論 素粒子論の諸問題 22	~ 17:15 領域 4 量子ドット		15:00 ~ 素 粒子論 可積分系など 51	~ 12:00 領域 4 スピン・井戸・光	~ 17:15 領域 4, 領域 7 グラフェン 84	~ 12:15 領域 4 細線·微小接合	~ 15:15 領域 4 量子ホール効果 111
АН	2 号	館 224	150	~ 12:00 素粒子実験 ミューオン	素粒子実験 飛跡検出器 24		~ 17:30 素粒子実験, 実験核物理 QCD 中性子ポジ 51	~ 12:15 素粒子実験 ^{半導体・飛跡}	~ 16:30 素粒子実験 半導体検出器 69	~ 12:00 素粒子実験 ガス検出器	~ 14:45 素粒子実験 ガス検出器 101
AJ	2 号	館 225	208	領域 9 表面界面電子物性/ トポロジカル 43	15:30 ~ 17:15 領域 9 表面界面電子物性		~ 16:45 [領域 9] 領域 9 シンポジウム 63	~ 12:15 領域 9 表面界面 ダイナミクス 94	~ 16:35 * 領域 9 表面界面電子物性/ 若手賞	領域 9 グラフェン 117	~ 16:30 領域 9 表面界面電子物性
AK	2 号	館 226	300	~ 11:15 * 素粒子論 中村誠太郎賞 / 若手賞 22	~ 17:15 素粒子論 双対性の応用 22		~ 17:15 * 素粒子論 非摂動的弦理論 51	9:15 ~ * 領域 8, 領域 7 超伝導 (圧力等) 90	素粒子論 弦の数理的側面 67	素粒子論 AdS/CFT	~ 16:15 素粒子論 弦理論的現象論
AL	2 号	館 227	208		~ 17:30 * 素粒子論 フレーバー物理 22		~ 17:15 素粒子論 高次元模型等	~ 12:15 領域 8 希土類 90	素粒子論 素粒子論的宇宙論 67	素粒子論 新物理の検証 99	~ 16:15 素 粒子論 新物理の現象 100
AM	2 号	館 228	208	~12:15 素粒子実験 ニュートリノ 23	~ 17:15 * 素粒子実験, 素粒子論 新物理探索 24		~ 16:45 素粒子実験 カロリメータ 52	* 素粒子実験, ビーム物理 フレーバー 68	素粒子実験 ニュートリノ 69	* 素粒子実験新物理探索	~ 14:45 素粒子実験 トリガー・DAQ 101
AN	2 号	館 229	300	~ 12:15 [素粒子実験, 宇宙線·宇宙物理] LiteBird	~ 17:10 [素粒子実験] Japan-Korea		~ 16:45 素 粒子実験 ヒッグス・電弱	~ 9:50 * ビーム 物理 若手奨励賞 78 10:05 ~ 12:15	~ 17:10 [素実,素論, ビーム] シンポ LHC	~ 11:50 [素実,実核, 宇宙] シンポ光センサー	~ 15:00 素 粒子実験 カロリメータ
		229		23	25		52	* 素粒子実験 若手奨励賞 68	70	101	102
AP	2 号	館 230	208	~ 12:00 ビーム物理, 領域 2 プラズマ科学 31	~ 17:15 [ビーム, 領域 1, 領域 10, 領域 12] 西川記念シンボ加速器 31		13:45 ~ 16:30 ビーム, 素実, 実核 J-PARC 56	~ 11:45 領域 11 確率過程 95	ビーム物理 , 領域 2 プラズマ科学 78	ビーム物理 レーザー・光源 106	102

会場		#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	人	3月19	目(土)	3月20	日(日)	3月21	日(月)	3月22	日(火)
場名		教室番号	数	午 前	午 後	午 前	午 後	午 前	午 後	午 前	午 後
AQ	2	号 館 231	150	~ 12:15 ビーム物理 ビーム基礎・応用 31	~ 16:15 領域 10 X線·粒子線 46		~ 16:15 領域 10 誘電体・フォノン	10:30 ~ 12:00 領域 10 陽電子 94	~ 17:45 * [領域10,領域1, 領域9, ビーム] 若手類前7シンポ・陽電子 95	9:45~ 領域 10 格子欠陷 118	~15:00 領域 10 格子欠陥 118
AR	2	号 館 232	150	領域 9 表面界面構造 44	15:15 ~ 17:30 領域 7 電荷揺らぎ・秩序		~ 16:20 [領域 6, 領域 8] ^{園有ジョセフソン効果} 60	9:30 ~ 12:20 * 領域 6 若手賞 /³He	~16:00 領域 6 超伝導 88	9:30 ~ 12:00 領域 6 制限空間 He	~ 16:15 領域 6 低次元/渦/音波 112
AS	2	号 館 233	70	領域 7 籠状・フラーレン 40	~ 17:30 宇宙線·宇宙物理, 素粒子実験 宇宙背景輻射 29		~ 17:15 領域 7, 領域 8 _{有機ディラック系} 60	10:30 ~ 12:15 領域 13 物理教育 98	~ 16:45 領域 13 物理教育 98	~ 12:45 領域 7, 領域 4 グラフェン・ ナノチューブ 113	
АТ	2	号 館 234	150	宇宙線・ 宇宙物理 _{宇宙物理} 28	宇宙線・ 宇宙物理 ^{相対論} 30		~ 17:30 宇宙線・ 宇宙物理 ^{相対論・宇宙論} 55	宇宙線・ 宇宙物理 _{宇宙論} 75	宇宙線・ 宇宙物理 _{宇宙論} 76	宇宙線・ 宇宙物理 高エネガンマ線 105	
AU	2	号 館 235	208	~ 12:15 領域 3 スピントロニクス 34	~ 16:45 領域 3 フラストレート系 36		~ 17:15 領域 3 スピントロニクス 58	~ 12:15 [領域 3] スピン軌道物性 82	~ 17:05 * 領域 3 若手奨励賞講演 / フラストレート系 83	~ 12:00 領域 3, 領域 8 マルチフェロ 110	
AW	2	号 館 236	353	9:05 ~ 12:00 * 実験核物理, 理論核物理 不安定核 (I) 27	~ 16:45 [実験核物理, 理論核物理] ^{核媒質中ハドロン分光} 28		* 理論核物理, 実験核物理 チュートリアル・若手類順 53	実験核物理, 理論核物理 ストレンジネス (I) 73	~ 16:50 [実験核物理, 理論核物理] ^{日韓シンポ不安定核} 74	~ 12:20 [実核,素実, 理核] J-PARCハドロン 103	~ 15:30 実験核物理 高エネ重イオン (II) 104
AX	2	号 館 237	208	~ 12:45 理論核物理 ハドロン構造 26	~ 15:45 実験核物理, 理論核物理 ^{不安定核(II)} 28		~ 16:45 実験核物理 不安定核(III)	9:30 〜 実験核物理 軽イオン・超重核・ 宇宙核 73	~ 17:30 * 素粒子論 , 理論核物理 格子 QCD:T, μ , N ₁ 67	9:15 ~ 実験核物理 対称性· 基礎物理 (I) 104	~ 16:00 実験核物理 対称性· 基礎物理 (II) 104
AY	2	号 館 238	208		~ 16:30 領域 6 超伝導·密度波 40		~ 16:30 領域 11 統計力学基礎論 1	9:30 ~ 12:20 * 領域 6 液体金属 88	13:45 ~ 16:15 領域 11 統計力学基礎論 2	領域 6 超伝導 112	~ 15:00 領域 6 超伝導 112
AZ	2	号 館 239	353	~ 12:45 宇宙線・ 宇宙物理 ^{超高エネ宇宙線} 28	~ 17:30 宇宙線・ 宇宙物理 ^{超高エネ宇宙線} 30		~ 16:55 [宇宙,素論, 素実] 55	~ 12:50 * 宇宙, 素論,素実 新頻順/-2-トリ/勧 75	宇宙線・ 宇宙物理 ^{太陽系宇宙線} 77	9:30 ~ 12:25 * 宇宙線・ 宇宙物理 _{重力波} 106	~ 16:15 宇宙線・ 宇宙物理 ^{重力波} 106
ВА	2	号 館 240	208	~ 12:45 領域 4, 領域 7 ^{グラフェン} 37	~ 17:15 領域 4 ワイル半金属 38		~16:50 [領域 5] 59	領域 1 , 素粒子実験 ^{原子分子} 79	~ 17:15 領域 4 トポロジカル 84	9:15~12:15 領域 4 トポロジカル 111	~ 15:30 領域 9 ナノ構造量子物性 117
ВВ	2	号 館 241	150	9:15 ~ 領域 13 物理教育 49	~ 16:45 領域 13 物理教育 50		* 領域 13 物理教育 66	~ 11:45 領域 7 導電性高分子・ 界面デバイス 89	~ 16:45 領域 7 界面デバイス 89	~ 12:15 領域 13 物理教育 121	
ВС	2	号 館 242	150	~ 12:15 領域 11 力学系 47	~ 17:15 領域 3 ^{温歴, f, グラス}		領域 3 量子スピン系 58	~ 12:00 領域 7 有機導体 · 超伝導 89	~ 17:15 領域 3 スピントロニクス 83	9:30~11:30 領域3 フラストレート系 110	
BD	2	号 館 243	70		~ 16:15 領域 13 物理学史 50		領域 9 ナノワイヤその他 63	~ 12:45 領域 3 量子スピン系 82	~ 15:30 領域 11 可積分系 96	9:15 ~ 11:30 領域 8 遷移金属酸化物	
BE	2	号 館 244	150	領域 7 有機スピン液体 40	13:45 ~ 16:15 領域 9, 領域 3 表面磁性 44		~ 17:15 領域 7, 領域 4 グラフェン関連 60	9:15 ~ 12:15 * 領域 9 結晶成長ナノ結晶	領域 1 原子分子 80	領域 7 有機導体 113	~ 15:30 領域 7 有機導体 113
BF	2	号 館 245	208	9:30 ~ 領域 12 高分子 48	~ 16:45 領域 12 ゾル・ゲル・液晶 49		13:50 ~ * 領域 12 若手賞 / 溶液・液体 65	9:15 ~ 12:00 領域 12, 領域 11 ^{ガラス合同 1} 97	領域 12 蛋白·核酸 2	9:15~12:00 領域 12, 領域 11 ^{ガラス合同 2} 120	
BG	2	号 館 246	353	10:00 ~ 12:00 [物理と社会] 物理天文参照基準 50	13:20 ~ 17:15 * 領域 7 若手賞·高圧· 分子性固体 41		~ 16:45 [領域4,素論,理核, 領域1,領域8,領域11] 近藤問題シンポ 59	10:00 ~ 12:10 * 領域 4 若手賞・チュート 84	13:40~ [領域7, 領域5, 領域10, 領域11] 89	[物理と社会] 121	
ВН	2	号 館 247	1 208	領域 5, 領域 7 光誘起相転移 38	領域 5 超高速現象 39		領域 5 超高速·非線形 59	9:30 ~ 12:10 * 領域 5 領域 5 · 招待講演 85	領域 5 新分光法·超高速 86	領域 5 高密度·微粒子	
	_										

会場		<i>集中</i> 平日	ı.	人	3月19	日(土)	3月20	日(日)	3月21	日(月)	3月22	日 (火)
場名		教室番号	î	数	午 前	午 後	午 前	午 後	午 前	午 後	午 前	午 後
ВЈ	2	号	館 248	208		領域 1 量エレ		領域 1 量エレ	~ 13:00 領域 1 ^{量エレ}	領域 1 量エレ	領域 1, 領域 11 ^{量エレ}	~14:45 領域 1 ^{量エレ}
ВК	2	号	館 249	353	9:30~ 領域 1 量エレ 32	32 ~ 17:30 領域 l 量エレ 33		56 ~ 17:15 * 領域 1 奨励賞 / 量エレ 56	79 ~ 12:20 [領域 1, 領域 10] ^{欠陥ダイヤシンポ} 79	80 ~ 17:45 領域 1 量エレ 80	107 領域 l ^{量エレ} 107	108 ~ 16:30 領域 1 量エレ 108
BL	2	号	館 250	208	10:30~ 領域 8 アクチナイド I	~ 17:30 * 領域 8 籠状物質 42		* 領域 8 アクチノイド II 61	~ 12:00 * 領域 8 若手奨励賞	~ 17:45 領域 8 Ce 系化合物 1	~ 12:45 * 領域 8 超伝導理論 114	~ 15:45 領域 8 銅酸化物 Ⅱ 116
ВМ	2	号	館 251	150	9:15~12:15 領域 8, 領域 3 カイラル磁性体 41	~17:15 領域 8 V·Co酸化物		~ 16:45 領域 8 銅酸化物 I	10:00 ~ 領域 8 磁性理論 90	~ 17:15 領域 8 Yb 系化合物 93	領域 8 Ce 系化合物 2	~ 16:15 領域 8 ルテニウム酸化物 116
BN	2	号	館 252	150	領域 8 カルコゲン・ 超伝導 42	~ 17:30 領域 8, 領域 11, 領域 4 低温理論 43		領域 8 鉄ヒ素系 2	領域 8 プニクトゲン 化合物 90	~ 17:45 領域 8 イリジウム酸化物 93	~ 12:00 領域 8 BiS2 系超伝導 114	
ВР	2	号	館 253	70	~ 12:15 領域 5 光電子分光	~16:15 領域 5 放射光 39		領域 5 励起子・ポラリトン 59	~ 12:45 領域 5 磁性体・ 超イオン 85	領域 5 超イオン導電体 86	領域 5, 領域 1 フォトニック結晶 111	
BQ	2	号	館 256	548	~ 12:45 領域 8 鉄ヒ素系 1	~ 16:50 [領域 8, 領域 3, 領域 7] Unconventional Superconductors 43		[領域8,領域3, 領域4,領域5] 量子位相流 62	[素論, 理核, 領域 8, 領域 11] 南部シンポ 67	~ 16:55 [領域 8] FeSe 超伝導 93	~12:45 領域 8 鉄ヒ素系 3	
BR	2	号	館 257	548	~ 12:00 領域 11 非平衡揺らぎ 47	[領域 11, 領域 2, 領域 6] 48		~ 16:45 [領域 6, 領域11,領域1] ^{量子乱流シンボ} 60	9:30 ~ 12:00 * 領域 11 若手奨励賞 96	~ 16:50 [領域 6 , 領域 8] f 電子系準結晶 88	領域 11 電子系1 118	~ 15:45 領域 11 電子系 2
BS	2	号	館 260	208	~ 12:00 領域 11, 領域 12 生物合同 I 47	~ 18:00 領域 11 粉体交通 / 摩擦地震 48		~16:45 * 領域 11, 領域 12 生物合同Ⅱ 64	~ 12:15 領域 11 ネットワーク 一般 96	~ 16:45 領域 11 ニューラル 97	~ 12:15 領域 11 社会系 118	13:15~16:30 領域 11 アクティブマター 119
ВТ	2	号	館 261	150	9:15 ~ 12:15 領域 11, 素論,領域 1 量子論基礎カオス 47	領域 11 古典スピン系1 48		~ 15:45 領域 11 古典スピン系 2 64	領域 11 量子スピン系他1 96	~ 17:45 領域 11 量スピ他 2・ グラス 97	領域 11 ニューラル+ 情報統計 119	~ 16:30 領域 11 情報統計 119
BU	2	号	館 262	150	~ 12:15 領域 11 圧縮性流体その他 47	~16:30 領域 11 振動子系 48		~ 16:30 領域 11 経済物理学 64	~ 12:00 領域 11 非圧縮性流体 96	~ 16:30 領域 11 非圧縮性流体 97	~ 12:00 領域 11 非圧縮性流体 119	~16:30 領域 11 反応拡散系 その他 120
BW	2	号	館 263	70	9:30~11:30 領域 12 化学反応ほか 49	~ 17:15 領域 12 数理生物/ 蛋白·核酸 49		~ 16:30 領域 12 コロイド・両親媒 65	~ 12:15 領域 12 濡れ・界面・ レオロジー 98	13:45 ~ 領域 12 アクティブ・破壊 98	9:30 ~ 領域 12 生体膜 120	
СА	3	号	館 32H	50	~ 12:15 素粒子実験 トリガー・DAQ 23	素粒子実験 光検出器 25			素粒子実験 光検出器 69	素粒子実験 粒子識別 測定器 70	~ 12:15 素粒子実験 トリガー・DAQ 101	
СВ	3	号	館 32I	50		15:15 ~ 16:30 領域 2 プラズマ基礎・ 科学 33		領域 2 プラズマ基礎・ 科学 57	~ 10:30 領域 2 慣性核融合 81	~ 17:30 領域 2 慣性核融合 / プラズマ基礎・科学 82	~ 13:00 領域 2 慣性核融合 / プラズマ基礎・科学 109	
СС	3	号	館 32J	50		15:15~ 素 粒子論 量子重力など 22		14:30~ 領域 13 環境物理 66	~ 12:15 領域 3 化合物磁性 83	~ 16:00 領域 3 実験技術 84	~ 12:15 素粒子論 格子場理論, 数値計算法 99	
CD	3	号	館 32K	50				領域 1 放射線物理 57	宇宙線・ 宇宙物理 ^{X線・y線} 75	宇宙線・ 宇宙物理 ^{X線・y線} 77	~ 12:45 領域 l , ビーム 物理 ^{原子分子} 107	
CE	3	号	館 32L	50				~ 14:45 領域 6 液体金属 60	9:30 ~ 12:15 宇宙線・ 宇宙物理 _{重力波} 76	宇宙線・ 宇宙物理 ^{重力波} 78	~ 12:15 領域 6 準結晶 · 金属一般 112	~ 15:00 領域 6 準結晶· 金属一般 113

会場名	教室番号	人	3月19	日(土)	3月20	日(日)	3月21	日(月)	3月22	目(火)
名	教主留写 数		午 前	午 後	午 前	午 後	午 前	午 後	午 前	午 後
PS	体 育 館		10:00 ~ 12:00 領域 3				10:00~12:00 領域 6 領域 8 122 領域 10 88, 91, 95		10:00 ~ 12:00 領域 8 領域 12 122 115, 120	
PSA	体 育 館			~ 15:30 領域 9		~ 15:30 領域 11 58 64		~ 15:30 領域 5 64 86		
PSB	体 育 館			15:30 ~ 17:30 領域 3 55 36		15:30 ~ 17:30 領域 8 領域 11 53 62, 65		15:30~17:30 理核・実核 領域 4 45 71,74,85		

注意 1:講演開始・終了時刻は原則として,午前は 9:00 ~ 12:30,午後は 13:30 ~ 17:00。 それら以外の場合のみ枠内上部に開始または終了時刻を記載。なお,ポスターセッションの展示時間は午前が 9:00 ~ 13:00,午後は 13:30 ~ 17:30。

注意 2:網掛けはシンポジウム講演,または招待・企画・チュートリアル講演,若手奨励賞受賞記念講演を含むセッション。 【 】 はシンポジウム講演,領域名左横の*印は招待・企画・チュートリアル講演,若手奨励賞受賞記念講演を含むセッション。

注意 3:枠内右下は掲載ページ。□で囲んだ数字は PS, PSA, PSB の発表件数。

注意 4:合同開催の領域が 3 領域以上のものは次の様に領域名を省略。 素粒子論→素論,素粒子実験→素実,理論核物理→理核,実験核物理→実核,宇宙線・宇宙物理→宇宙,ビーム物理→ビーム

領域別使用会場一覧表

領 域 名 使用会場	領域名 使用会場
素粒子論領域 ········· AA, AF, AG, AK, AL, AM, AN, AX, AZ, BG, BQ, BT, CC	領域 5 ···································
素粒子実験領域 ··················AA,AF,AH,AM,AN,AP,AS,AW,AZ,BA,CA	領域 6 ······· AR, AY, BR, CE, PS
理論核物理領域 ······ AA, AB, AC, AW, AX, BG, BQ, PSB	領域 7 ······ AG, AK, AR, AS, BA, BB, BC, BE, BG, BH, BQ
実験核物理領域 ······ AA, AB, AC, AE, AH, AN, AP, AW, AX, PSB	領域 8 ········· AK, AL, AR, AS, AU, BD, BG, BL, BM, BN, BQ, BR, PS, PSB
宇宙線·宇宙物理領域 ························ AA, AN, AS, AT, AZ, CD, CE	領域 9 ····· AJ, AQ, AR, BA, BD, BE, PSA
ビーム物理領域 ····································	領域 10 ······ AF, AP, AQ, BG, BK, PS
領域1 ······ AE, AP, AQ, BA, BE, BG, BJ, BK, BP, BR, BT, CD	領域 11 ··· AP, AY, BC, BD, BF, BG, BJ, BN, BQ, BR, BS, BT, BU, PSA, PSB
領域 2 ···································	領域 12 ···································
領域 3 ······ AU, BC, BD, BE, BM, BQ, CC, PS, PSB	領域 13 ···································
領域 4 ····· AG, AS, BA, BE, BG, BN, BQ, PSB	物理と社会

シンポジウム一覧表

月日	時間	会場	主 題	開催領域
3月19日	9:00 ~ 12:15	AN	熱いビッグバン以前の宇宙を探索する	素粒子実験領域、宇宙線・宇宙物理領域
			宇宙マイクロ波背景放射偏光観測衛星 LiteBIRD への期待	
	$10:00 \sim 12:00$	BG	物理学・天文学分野の参照基準	物理と社会
	13:30 ~ 16:45	AW	核媒質中のハドロン分光の進展と展望	実験核物理領域,理論核物理領域
	$13:30 \sim 16:50$	AE	イオン蓄積実験が切り拓く多彩な物理	領域 1, 領域 2, 実験核物理領域
	13:30 ~ 16:50	BQ	Commonalities and individualities in unconventional superconductors	s 領域 8, 領域 3, 領域 7
	13:30 ~ 17:00	BR	ヘリシティ	領域 11, 領域 2, 領域 6
	13:30 ~ 17:10	AN	Japan-Korea Joint Symposium: Flavor and non-accelerator physics	素粒子実験領域
	$13:30 \sim 17:15$	AP	広がる加速器の産業・医療・創薬利用 - 西川記念シンポジウム -	ビーム物理領域,領域 1,
				領域 10,領域 12
3月20日	13:30 ~ 16:20	AR	固有ジョセフソン効果の最前線	領域 6, 領域 8
	13:30 ~ 16:30	AD	クロススケールサイエンス	領域 2,ビーム物理領域
			- 極限的非平衡状態における多階層構造結合の科学 -	
	13:30 ~ 16:45	AJ	分子性薄膜とその表面 / 界面の物理	領域 9
	13:30 ~ 16:45	BG	近藤問題の新展開 New Perspective of Kondo problem	領域 4,素粒子論領域,
				理論核物理領域,領域 1,領域 8,領域 11
	13:30 ~ 16:45	BR	量子乱流が拓く新しい乱流科学	領域 6,領域 11,領域 1
	13:30 ~ 16:50	BA	超高分解能非弾性散乱が加速する物質科学	領域 5
	13:30 ~ 16:55	AZ	2015年ノーベル物理学賞ニュートリノ振動の発見と将来への展望	
				素粒子論領域,素粒子実験領域
	$13:30 \sim 17:00$	BQ	対称性の破れと量子位相流	領域 8,領域 3,領域 4,領域 5
3月21日	$9:00 \sim 12:15$	AU	スピン軌道相互作用を機軸とするスピン物性研究の最前線	領域 3
	$9:00 \sim 12:20$	BK	量子情報・量子計測における宝石「欠陥ダイヤモンド」の作り方、	
	$9:00 \sim 12:30$	BQ	自発的対称性の破れ:	素粒子論領域,理論核物理領域,
			南部陽一郎先生が拓いた物理と素粒子・原子核・物性の進展	領域 8,領域 11
	$13:30 \sim 16:50$	AW	Current Activities and Future Prospects on Unstable Nuclei:	実験核物理領域,理論核物理領域
			Japan-Korea Exchange Program	
	$13:30 \sim 16:50$	BR	f電子系準結晶及び近似結晶の最近の展開	領域 6,領域 8
	$13:30 \sim 16:55$	BQ	FeSe のエキゾチック超伝導	領域 8
	$13:30 \sim 17:00$	AD	プラズマ診断のための能動光計測の新展開	領域 2
	$13:30 \sim 17:10$	AN	LHC13TeV の物理成果と今後の展望	素粒子実験領域,素粒子論領域,
				ビーム物理領域
	$13:40 \sim 17:00$		フォノンエンジニアリングに向けた物質科学の新展開	領域 7, 領域 5, 領域 10, 領域 11
	14:15 ~ 17:45	AQ		領域 10, 領域 1, 領域 9, ビーム物理領域
3月22日	$9:00 \sim 11:50$	AN	光センサー:単一光子検出の最前線	素粒子実験領域,実験核物理領域,
			A DADO AND HEALTH LITE AND A SECOND HIER	宇宙線・宇宙物理領域
	$9:00 \sim 12:20$	AW	J-PARC ハドロン実験施設拡張で広がる新たな世界	実験核物理領域,素粒子実験領域,
	0.00	D. ~	and a second second second	理論核物理領域
	9:00 ~ 12:30	BG	ダイバーシティーの中での物理教育	物理と社会
	$13:30 \sim 15:15$	AD	プラズマ科学と理科教育:学校教育における活用を目指して	領域 2,領域 13

招待講演一覧表

月	日	時間	会場	題目	氏 名	所 属	開催領域
3月	19日	$9:05 \sim 9:45$	AW	新元素合成への挑戦	森田浩介	九州大学理学研究院	実験核物理領域,
							理論核物理領域
		$13:30 \sim 14:00$	BL	四極子近藤格子の理論: Pr 1-2-20 系の異常物性をめぐって	鶴田篤史	阪大院基礎工	領域 8
		$13:30 \sim 14:30$	AD	ジャイロ運動論的場の理論の進展	洲鎌英雄	核融合研	領域 2
3月	20 日	$13:30 \sim 14:15$	BL	Ferromagnetism and Superconductivity: evidence	Jacques	CEA - INAC	領域 8
				on three U intermetallic compounds	Flouquet	Grenoble	
		$15:45 \sim 16:45$	BS	Stirring fluids at low Reynolds numbers, or hydrodynamic	Alexander	Fritz Haber Inst.,	領域 11,領域 12
				collective effects of active proteins in biological cells.	S. Mikhailov	Hiroshima Univ.	
3月	21 日	$9:30 \sim 10:15$	BH	光による物質制御とそのダイナミクス	末元徹	東大物性研	領域 5
		$11:00 \sim 11:30$	BE	透過電子顕微鏡を用いた溶液からの核生成の"その場"観察	木村勇気	北大低温研	領域 9
		$13:30 \sim 14:00$	AJ	カルコゲナイド超薄膜の表面・界面における	劉燦華	上海交通大学	領域 9
				新奇な超伝導物性			
3月	22 日	9:00 ~ 9:30	BL	汎関数繰り込み群法による多軌道強相関電子系の解析	土射津昌久	名大理	領域 8

企画講演一覧表

月	日	時間	会場	題目	氏 名	所 属	開催領域
3月	19 日	9:00 ~ 9:10	AK	第 10 回中村誠太郎賞授賞式	菅本晶夫	お茶の水女子大	素粒子論領域
		$9:10 \sim 9:35$	AK	ABJM 理論のラージ N 展開について	初田泰之	DESY	素粒子論領域
		$13:30 \sim 14:15$	AL	宇宙ニュートリノから探る新物理	太田俊彦	埼大理	素粒子論領域
		$13:30 \sim 14:15$	AM	標準模型を超える物理とエネルギーフロンティア実験	諸井健夫	東大理	素粒子実験領域,
							素粒子論領域
3月	20 日	13:30 ~ 14:15	AK	超弦の場の理論の完全な定式化	大川祐司	東大総文	素粒子論領域
3月	21 日	9:15 ~ 9:45	AK	硫化水素の高圧誘起高温超伝導	清水克哉	阪大基極セ	領域 8
		$9:45 \sim 10:15$	AK	硫化水素超伝導の理論的研究の現状	明石遼介	東大理	領域 8
		$10:45 \sim 11:15$	AM	いよいよ始まる SuperKEKB !	大西幸喜	高エ研	素粒子実験領域,
				次世代型高輝度加速器実験の幕開け			ビーム物理領域
		$13:30 \sim 14:15$	AX	有限温度 QCD における U(1) カイラルアノマリー	深谷英則	大阪大学理学部	素粒子論領域,
							理論核物理領域
3月	22 日	9:30 ~ 10:10	ΑZ	J-GEM: 天体重力波の電磁波追跡観測ネットワーク	吉田道利	広大・宇宙科学センター	宇宙線・
							宇宙物理領域
		$10:45 \sim 11:15$	AM	Search for Dark Particles at Belle and Belle II	Jaegle Igal	Univ.of Florida	素粒子実験領域

チュートリアル講演一覧表

月 日	時間	会場	題目	氏 名	所 属	開催領域
3月20日	13:30 ~ 14:20	AW 🖣	中性子過剰な原子核の物理	宇都野穣	原子力機構先端基礎	理論核物理領域, 実験核物理領域
3月21日	1 11:25 ~ 12:10	BG 1	トポロジカル絶縁体と D ブレーンの対応	木村太郎	慶應義塾大学 日吉物理学教室 自然科学研究教育セン	領域 4

若手奨励賞受賞記念講演一覧表 (1/2)

月 日	時間	会場	題目	氏 名	所 属	開催領域
3月19日	9:35 ~ 9:45	AK	若手奨励賞の選考経過について	鈴木博	九大理	素粒子論領域
	$9:45 \sim 10:10$		暗黒物質と核子の散乱断面積の有効理論による評価	永田夏海	ミネソタ大	素粒子論領域
	$10:15 \sim 10:45$		局所演算子により励起された状態の	野崎雅弘	シカゴ大	素粒子論領域
	10.10 10.40	7111	エンタングルメント・エントロピー	四两位五	· // -/\	为(4)下 1 hm 於(5)(
	10.45 ~ 11.15	A 1/2	二つの閉じた空間領域に対する	芝暢郎	京大基研	素粒子論領域
	10:45 - 11:15	AK		~物印	尔入 至 切	亲似 J 珊 帜
	10.00 10.00	DO	エンタングルメント・エントロピー	њ: wz гп = п	まして	AE L4 E
	$13:20 \sim 13:30$		若手奨励賞選考報告および授賞式	鹿野田一司	東大工	領域 7
	$13:30 \sim 14:00$		分子性導体に対する電界効果キャリアドーピング	川椙義高	理研	領域 7
	$14:00 \sim 14:30$	BG	走査トンネル顕微鏡を用いたグラファイトに形成する	近藤剛弘	筑波大数理物質系	領域7
			局在化した電子準位に関する研究			
	$14:30 \sim 15:00$	$_{\mathrm{BG}}$	分子デバイスにおける電荷キャリアの光プローブと	堤潤也	産総研	領域 7
			可視化技術の研究			
3月20日	$14:30 \sim 14:40$	AW	理論核物理領域 若手奨励賞の選考結果について	保坂淳	阪大 RCNP	理論核物理領域,
						実験核物理領域
	$14:40 \sim 15:10$	AW	6He のクーロン分解反応における 2 中性子相関	菊地右馬	理研仁科センター	理論核物理領域,
						実験核物理領域
	$ _{15:10} \sim 15:40$	AW	相互作用するボソン模型ハミルトニアンの平均場理論に	野村昂亮	国立重イオン	理論核物理領域,
			基く導出法と不安定核への適用		加速器研究所	実験核物理領域
	$15:40 \sim 16:10$	A 337	時間依存密度汎関数法による重イオン多核子移行反応の研究	関澤一之	ワルシャワ工科大学	理論核物理領域,
	15.40	ΛW	時间以行苗及が因数仏による生すなンタ核1物行及心の例元	大学 心	/ルンヤノ工作人子	実験核物理領域
	1000 1000	A 337	中野社県田原は サエ坂県党の選邦社用について	取口だと	1. III 1.24	
	$16:20 \sim 16:30$	AW	実験核物理領域 若手奨励賞の選考結果について	野呂哲夫	九州大学	理論核物理領域,
	1.000		中国上版 E 产河 1970 中 5 36 40 30 4 5 1 5 2	maria (A) as	FE L DOVE	実験核物理領域
	$16:30 \sim 17:00$	AW		野地俊平	阪大 RCNP	理論核物理領域,
			超新星前駆現象にかかわる電子捕獲確率の導出			実験核物理領域
	$13:30 \sim 13:40$	BK	はじめに	東俊行	理研	領域 1
	$13:40 \sim 14:10$	BK	ハイブリッド量子テレポーテーション	武田俊太郎	分子研	領域 1
	$14:10 \sim 14:40$	BK	超伝導量子ビットと強磁性体中の単一マグノンとの	田渕豊	東大先端研	領域 1
			コヒーレント結合の実現			
	$14:40 \sim 15:10$	BK	量子シミュレーションに向けた冷却イオンのスピンおよび	野口篤史	東大先端研	領域 1
			配列自由度の量子状態制御			
	$13:50 \sim 14:00$	BF	第 10 回若手奨励賞授賞式	横島智	東京薬大	領域 12
	$14:00 \sim 14:30$		凝縮相量子動力学理論に基づく光合成エネルギー移動・	石崎章仁	分子研	領域 12
			電荷分離過程の理論研究		, , , , , , , , , , , , , , , , , , ,	1200
	$14:30 \sim 15:00$	BF	核量子性が凝縮系物性に与える影響の計算科学的実証と解明	金賢得	京大院理	領域 12
	$13:30 \sim 13:45$		選考経過および授賞	高岩義信	高エネ機構	領域 13
			明治期授業筆記が紐解く物理教育の源流と現代への具現化	興治文子	新潟大学	領域 13
3月21日	$13:45 \sim 14:15$		素料子実験領域 選考結果説明と授賞式	山田作衛	東大・KEK	
3月21日	$10.05 \sim 10.15$					素粒子実験領域
	$10:15 \sim 10:55$		Observation of $\nu_{\mu} \rightarrow \nu_{e}$ oscillation in the T2K experiment	家城佳	東大素セ	素粒子実験領域
	$10.55 \sim 11.35$	AN	Search for the Lepton Flavor Violating Muon Decay	藤井祐樹	KEK 素核研	素粒子実験領域
			$\mu^+ \rightarrow e^+ \gamma$ with a Sensitivity below 10^{-12} in the MEG Experiment			all the same and t
	$11:35 \sim 12:15$	AN	Measurement of the Higgs boson couplings using	吉原圭亮	University of	素粒子実験領域
	1		$WW^* \rightarrow l \nu l \nu$ final state		Pennsylvania	
	9:00 ~ 9:05	AZ	宇宙線・宇宙物理領域 若手奨励賞選考報告および授賞式	田代信	埼玉大院理工	宇宙線・
						宇宙物理領域
	9:05 ~ 9:35	ΑZ	光リング共振器を用いたローレンツ不変性の検証	道村唯太	東京大院理	宇宙線・
				-		宇宙物理領域
	$9:35 \sim 10:05$	AZ.	高エネルギー宇宙ニュートリノの起源と	村瀬孔大	ペンシルベニア	宇宙線・
	10.00		マルチメッセンジャー宇宙粒子物理学への展望		州立大学	宇宙物理領域
	9:00 ~ 9:10	ΔN	ビーム物理領域選考結果説明と授賞式	栗木雅夫	広島大学	ビーム物理領域
	$9:10 \sim 9:50$		反水素原子ビームの生成に関する研究	永田祐吾	東京農工大	ビーム物理領域
			若手奨励賞受賞理由説明	水田和音 藤澤彰英	九大応力研	
	$10.45 \sim 10.55$					領域 2
	$10:55 \sim 11:25$	AD	実空間・速度空間の統計的揺動を取り込んだ	小菅佑輔	九大高等研究院	領域 2
	1		プラズマ乱流・輸送に関する研究			
	11:25 ~ 11:55		3次元プラズマ乱流輸送の大規模シミュレーション研究の進展	2724-7/15	核融合研	領域 2

若手奨励賞受賞記念講演一覧表 (2/2)

月日	時間	会場	題 目	氏 名	所 属	開催領域
	13:30 ~ 13:35	AU	受賞者の紹介	佐久間昭正		領域 3
0 /1 21			磁性と誘電性の新奇関係	左右田稔	東大物性研	領域 3
	$14:15 \sim 14:45$		低次元量子磁性体における電子スピン共鳴の理論研究	古谷峻介	ジュネーブ大学	領域 3
	$14:50 \sim 15:20$	AU	フラストレート三角格子磁性体の磁化過程と	山本大輔	早稲田大学高等研	領域 3
			新奇量子相転移の研究			
	$10:00 \sim 10:10$	BG	領域 4 若手奨励賞受賞者紹介	岡本徹	東大院理	領域 4
	$10:10 \sim 10:40$	BG	乱れのある3次元トポロジカル絶縁体に関する理論研究	小林浩二	上智大理工	領域 4
	$10:40 \sim 11:10$	BG	量子ホール端状態における電子ダイナミクスの実験的研究	橋坂昌幸	東工大院理工	領域 4
			第10回日本物理学会若手奨励賞 領域5 選考報告と授賞式		上智大理	領域 5
	$10:40 \sim 11:10$	ВН	高強度THz 分光の金属、半金属への適用と	南康夫	横国大院工	領域 5
			非線形電子応答に関する研究			
	$11:10 \sim 11:40$	ВН	時間分解レーザー分光によるペロブスカイト半導体の	山田泰裕	千葉大院理	領域 5
			光キャリアダイナミクスの研究	7m>4 141		A71.D =
	$11:40 \sim 12:10$	ВН	共鳴軟 X 線散乱による遷移金属酸化物の 新しい磁気秩序の観測	和達大樹	東大物性研	領域 5
	0.30 ~ 0.35	ΛV	領域6若手奨励賞受賞者業績紹介	木村薫	東大新領域	領域 6
			最子ビーム散乱実験と計算機実験を組み合わせた	田原周太	琉球大理	領域 6
	9.55 10.05	АΙ	室引 と	山が川へ	加尔八生	[與25K U
	11:00 ~ 11:05	AR	領域 6 若手奨励賞受賞者業績紹介	木村薫	東大新領域	領域 6
			異方的超流動へリウム3に対する表面および不純物散乱の研究		阪大院理	領域 6
			若手奨励賞選考報告および授賞式	遠山貴己	東理大理	領域 8
	$9:15 \sim 9:45$	BL	酸化物高温超伝導体における擬ギャップと	近藤猛	東大物性研	領域 8
			超伝導の競合関係の研究			
	$9:45 \sim 10:15$	BL	動的平均場理論による銅酸化物超伝導体の	酒井志朗	理研 CEMS	領域 8
			擬ギャップ状態と超伝導状態の研究			
	$10:30 \sim 11:00$	BL	角度分解光電子分光による鉄系高温超伝導体の研究	中山耕輔	東北大理	領域 8
	$11:00 \sim 11:30$	BL	強相関電子系物質における多自由度に起因する	松林和幸	電通大先進理工	領域 8
			圧力誘起量子相転移の研究			
	$11:30 \sim 12:00$	BL	南部ゴールドストーンモードとの相互作用に誘起される	渡辺悠樹	MIT 物理科	領域 8
			非フェルミ液体に関する理論研究			A71.D. a
	$15:30 \sim 15:35$		領域9若手奨励賞選考報告および授賞式	吉信淳	東大物性研	領域 9
		AJ	表面に吸着した分子のスピン状態の研究	塚原規志	東大新領域	領域 9
	$16:05 \sim 16:35$	AJ	走査プローブ顕微鏡を応用した原子スケールの 電気伝導と原子スイッチ	山崎詩郎	東工大総理工	領域 9
	12.20 - 12.25	40	電スIX等と原すスイッチ 第 10 回若手奨励賞選考報告および授賞式	阿部浩二	電通大	領域 10
			第 10 回石十突励貝越考報言ねよび投貝式 スピン軌道相互作用によるポジトロニウムスピン転換反応の	門可行— 澁谷憲悟	東大院総合文化	領域 10 領域 10
	10.00 - 14:00	ΛŲ	基礎研究と原子衝突への展開		本八州心日	吸傷 10
	9:30 ~ 9:45	BR	審査経緯の説明と受賞者紹介	宮下精二	東大・理	領域 11
	$9:45 \sim 10:15$		粘性支配的な流体中の微生物の運動に関する研究	石本健太	京大・白眉	領域 11
	$10:15 \sim 10:45$		非ガウス型ノイズに駆動されるランジュバン方程式の理論		東工大・総合理工	領域 11
			非平衡統計力学の基礎理論と生物物理学への応用	川口喬吾	ハーバード大・	領域 11
					システム生物	
	$11:30 \sim 12:00$	BR	無限自由度の振動的対流現象に関する位相縮約の理論	河村洋史	海洋研究開発機構	領域 11
3月22日	$10:45 \sim 10:50$	AF	第 10 回若手奨励賞選考報告および授賞式	阿部浩二	電通大	領域 10
	$10:50 \sim 11:20$	AF	コヒーレントスピン偏極電子線を用いた時間分解顕微法の開発	桑原真人	名大・未来材料・	領域 10
					システム研	

物性領域 領域1:原子分子・量子エレクトロニクス・放射線

領域 2: プラズマ 領域 3: 磁性

領域 4: 半導体、メゾスコピック系・局在

領域 5: 光物性

領域 6:金属(液体金属·準結晶)·低温(超低温·超伝導·密度波)

領域 7:分子性固体 領域 8:強相関電子系

領域9:表面・界面, 結晶成長

領域 10:構造物性 (誘電体,格子欠陥, X線・粒子線,フォノン) 領域 11:物性基礎論・統計力学・流体物理・応用数学・社会経済物理

領域 12:ソフトマター物理・化学物理・生物物理

領域 13: 物理教育, 物理学史, 環境物理

インフォーマルミーティング一覧表

月日		会場		世話人	所属 一般多	
3月19日			PTEP フレンドシップミーティング	坂井 典佑	日本物理学会 PTEP 編集委員	長◎
			日本学術会議との連絡会	松尾由賀利	法政大理工	\bigcirc
	$12:30 \sim 13:30$	CC	中小規模研究室懇談会	岸本 功	新潟大教育	\triangle
			原子核三者若手春総会	管野 淳平	九大院理	\triangle
	17:30 ~ 19:30	AA	高温・高密度 QCD 物質オープンフォーラム	日高 義将	理研	0
			FPUA (Fundamental Physics using Atoms) 連絡会議	酒見 泰寛	東北大学・CYRIC	0
			ハドロンホールユーザー会	高橋 俊行	KEK	Ö
	$17:30 \sim 19:30$			本多 充	原子力機構	0
			領域 1 放射線物理分科インフォーマルミーティング	佐藤真一郎	原子力機構	0
						_
			Belle II Japan 総会	飯嶋 徹	名古屋大 理・KMI	0
			RIBF ユーザーグループ・タウンミーティング	緒方 一介	阪大 RCNP	0
	$16:15 \sim 17:15$	BD	領域 13 物理学史インフォーマルミーティング 放射光・真空紫外分光インフォーマルミーティング	雨宮 高久	日大理工	0
	$17:30 \sim 18:30$	BH	放射光・真空紫外分光インフォーマルミーティング	横谷 尚睦	岡山大院自然	0
	17:30 ~ 18:30	BJ	領域 1 原子分子インフォーマルミーティング	永谷 清信	京大理	0
	17:45 ~ 18:45	ВК	領域1量エレインフォーマルミーティング	青木 貴稔	東大院総合	0
	17:30 ~ 19:30	BM	構造物性インフォーマルミーティング	中尾 裕則	KEK 物構研	C
			Open-It 若手の会	武田 彩希	京大理	0
3月20日	19.20 ~ 12.20	AO	領域 10・X線・粒子線分科会インフォーマルミーティング		東大院総合文化	
3 77 20 11						
			領域 13 拡大役員会	高岩 義信	高エネ機構	<u>C</u>
	$17:30 \sim 20:00$			小沢恭一郎	KEK	×
	$17:30 \sim 20:00$			延与 佳子	京大理	×
	$17:30 \sim 19:00$	AC	停止・低速不安定核ビーム同好会	川村 広和	東北大・学際研	\bigcirc
	$17:30 \sim 20:00$	AF	ビーム物理領域インフォーマルミーティング	坂上 和之	早大高等研	\subset
			素粒子論委員会・素核理論協議会	青木真由美	金沢大数物	
	17:30 ~ 20:00	AN	高エネルギー物理学研究者会議総会	長谷川庸司	信州大	
			領域 10 誘電体分科インフォーマルミーティング	松浦 直人	CROSS	0
	$17.30 \sim 10.30$	ΛC	CRC 実行委員会	伊藤 好孝	名大 ISEE	×
						C
			宇宙線粒子若手の会インフォーマルミーティング	高橋 光成	ICRR	_
			高エネルギー宇宙物理連絡会	水野 恒史	広島大学	C
			物理教育インフォーマルミーティング	中村 琢	岐阜大教育	\bigcirc
	$17:30 \sim 20:00$	BC	第 61 回 物性若手夏の学校 インフォーマルミーティング	森下 直樹	阪大基礎工	
	17:00 ~ 19:30	BD	高専物理教育意見交換会	笠井 聖二	呉高専	\times
	$17:00 \sim 18:00$	BG	領域4インフォーマルミーティング	中島 峻	理研 CEMS	0
			領域1合同インフォーマルミーティング	佐藤真一郎	原子力機構	0
			拡大物性委員会	清水 克哉	阪大基礎工極限センター	0
			計算物性物理インフォーマルミーティング			0
				渡辺 宙志	東大物性研	_
			領域 11 インフォーマルミーティング	寺前順之介	阪大情報	C
	$17:00 \sim 18:00$			矢吹 哲夫	酪農学園大学	\mathbb{C}
	$18:00 \sim 20:00$	CC	原発過酷事故の研究	槌田 敦	たんぽぽ舎	0
3月21日	12:30 ~ 13:30	AA	宇宙核物理連絡協議会	山口 英斉	東大 CNS	\bigcirc
	12:30 ~ 13:30	AB	原子核研究編集委員会	青井 考	RCNP	×
			領域 2 運営会議	本多 充	原子力機構	(
			領域 10 インフォーマルミーティング	松浦 直人	CROSS	0
						_
			JPSJ フレンドシップミーティング	上田 和夫	日本物理学会 JPSJ 編集委員長	
			陽電子関連インフォーマルミーティング	澁谷 憲悟	東大院総合文化	0
			領域7インフォーマルミーティング	山下 穣	東大物性研	\subset
	$12:45 \sim 13:30$	ВН	領域 5 光物性インフォーマルミーティング	太野垣 健	産総研太陽光センター	0
	12:30 ~ 13:30	BL	領域8インフォーマルミーティング	酒井 英明	阪大院理	0
	12:30 ~ 13:30	BW	領域 12 インフォーマルミーティング	住野 豊	東理大理	0
			中小規模研究室懇談会(物性)	小山 佳一	鹿大理	0
}			医学系の物理教育	木下順二	女子医大	
∩∩ ~ 18·∩∩			領域9インフォーマルミーティング	神子公男	東大生研	0
10.00						
			素粒子論懇談会・素核合同総会	青木真由美	金沢大数物	2
			領域6合同インフォーマルミーティング	西尾太一郎	東理大理	0
			教員養成系インフォーマルミーティング	谷口 正明	名城大	\mathbb{C}
	$18:00 \sim 20:00$	AY	講演「安全保障と物理研究-物理学者の社会的責任の	吉野 太郎	関学大総合政策	\mathbb{C}
			これまでと今後」(講師交渉中)、物理学者の社会的責任			
	17:30 ~ 20:00	AW	原子核談話会総会	近藤 洋介	東工大理工	_
	$17:30 \sim 20:00$ $17:30 \sim 20:00$			石川壮一	法政大	_
						(
			理論天文学宇宙物理学懇談会報告会	郡和範	KEK 理論センター	_
			宇宙線・宇宙物理領域懇談会	田代信	埼玉大院理工	0
	$17:50 \sim 19:00$			伊藤 好孝	名大 ISEE	0
	$17:30 \sim 18:30$	BC	領域3インフォーマルミーティング	浅野 貴行	福井大工	0
	$17:30 \sim 20:00$	BJ	日本中間子科学会総会	足立 匡	上智大理工	
			高圧合成による新物質開発インフォーマルミーティング	関根ちひろ	室蘭工大院工	
			超イオン導電体インフォーマルミーティング	中村 浩一	徳島大工	
						_
			高エネルギー委員会 領域 10 格子欠陥分科インフォーマルミーティング		信州大 横浜創英大	X
3月22日				若生 啓		

^{*}一般参加可否の説明(\bigcirc 歓迎: \bigcirc 関係グループ等: \triangle 関係者のみ: \times)

領域委員会 素核宇ビーム領域・物性領域プログラム小委員会 委員一覧表

任期: 2015年4月~2016年3月

	氏 名	所 属
委員長	櫻井 博儀	東大院理・理研
副委員長	小形 正男	東大院理
領域外委員「物理と社会」担当	柴田 利明	東工大院理
領域外委員	野尻美保子	高エネ機構
領域外委員	石田 武和	阪府大工

素核宇ビーム領域正副代表

	代表氏名	所 属	副代表氏名	所 属
素粒子論領域	北野龍一郎	高エネ機構	波場 直之	島根大院総合理工
素粒子実験領域	久世 正弘	東工大院理工	杉山 晃	佐賀大理工
理論核物理領域	初田 哲男	理研	中務 孝	筑波大計算科学セ
実験核物理領域	青井 考	阪大核物理研究セ	小沢恭一郎	高エネ機構
宇宙線・宇宙物理領域	田代信	埼玉大院理工	中畑 雅行	東大宇宙線研
ビーム物理領域領域	佐々木茂美	広大放射光セ	羽島 良一	原子力機構

物性領域正副代表

	代表氏名	所 属	副代表氏名	所 属
領域1:原子分子・量子エレクトロニクス・放射線	東 俊行	理研	井元 信之	阪大基礎工
領域 2: プラズマ	藤澤 彰英	九大応用力学研	上杉 喜彦	金沢大理工
領域 3:磁性	佐久間昭正	東北大工	坂井 徹	兵庫県大物質
領域 4:半導体、メゾスコピック系・量子輸送	岡本 徹	東大院理	都倉 康弘	筑波大数物
領域 5: 光物性	江馬 一弘	上智大理工	田中耕一郎	京大院理
領域 6: 金属(液体金属・準結晶)・低温(超低温・超伝導・密度波)	木村 薫	東大院新領域	坪田 誠	阪市大院理
領域 7: 分子性固体	鹿野田一司	東大院工	澤博	名大院工
領域 8:強相関電子系	遠山 貴己	東理大理	佐藤 憲昭	名大院理
領域 9:表面·界面、結晶成長	平山 博之	東工大院理工	吉信 淳	東大物性研
領域 10:構造物性誘電体、格子欠陥、X線・粒子線、フォノン	阿部 浩二	電通大情報理工	田中 良和	理研放射光セ
領域 11:物性基礎論·統計力学·流体物理·応用数学·社会経済物理	宮下 精二	東大院理	山田 道夫	京大数理研
領域 12:ソフトマター物理・化学物理・生物物理	福田順一	産総研	高須 昌子	東薬大生命
領域 13:物理教育・物理学史・環境物理	高岩 義信	高エネ機構	高橋 尚志	香川大教育

領域運営委員一覧表

NELD 6	हर्ग प्राप्त			領域運	営委	員	
領域名	分野	2015	年4月	月~2016年3月	2015	年 10	月~2016年9月
素粒子論領域	素粒子論	青木 保	R道	名大素粒子宇宙機構	吉田俊	建太郎	京大理
	素粒子現象論	淺賀 岳	彦	新潟大自然科学			
素粒子実験領域	素粒子実験	西田昌	事	KEK 素核研	市川	温子	京大理
理論核物理領域	理論核物理	鈴木 克	7.	東理大理	木村	真明	北大理
実験核物理領域	実験核物理	中野 健	世一	東工大院理工	吉見	彰洋	岡大極限量子
宇宙線・宇宙物理領域	宇宙線・宇宙物理		印範	高エネ機構	小汐	由介	岡大理
ビーム物理領域	ビーム物理	坂上 和	1之	早大高等研	井上	峻介	京大化研
領域 1:原子分子・量子エレクトロニクス・	原子・分子	永谷 清	情信	京大院理	島田	紘行	農工大工
放射線	放射線物理	佐藤真一	一郎	原子力機構	鈴木	拓	物材機構
	量子エレクトロニクス	青木 貴	食稔	東大院総合	宇佐見	息康二	東大先端研
領域 2:プラズマ	プラズマ	難波 愼	į —	広大院工	藤田	隆明	名大院工
	プラズマ	成行 泰	桑裕	富山大人間発達科学	藤岡	慎介	阪大レーザー研
	プラズマ	井戸	毅	核融合研	本多	充	原子力機構
領域 3:磁性	磁気共鳴	浅野 貴	行	福井大院工	小山	岳秀	兵庫県大理
	スピントロニクス	壬生	攻	名工大院工	安立	裕人	原子力機構
	磁性	大西 弘	ム明	原子力機構	木村	健太	阪大基礎工
領域 4:半導体、メゾスコピック系・	グラフェン				守谷	頼	東大生産研
量子輸送	量子ドット	阪野	塁	東大物性研			
	トポロジカル絶縁体				塩見	雄毅	東北大金研
	半導体	原田 幸	蚓	神戸大工	福島	鉄也	阪大基礎工
	量子ホール効果	中島	峻	理研			
領域 5: 光物性	イオン結晶・光物性	太野垣	健	産総研	横谷	尚睦	岡山大院自然
	イオン結晶・光物性	佐藤 琢	% 哉	九大院理	長谷	宗明	筑波大数物
	イオン結晶・光物性	大畠 悟	郎	阪府大院理			
領域 6:金属(液体金属・準結晶)・	液体金属				田原	周太	琉球大理
低温(超低温・超伝導・密度波)	超低温				村川	智	東大低温セ
	超伝導・密度波	西尾太一	一郎	東理大理			
	準結晶	阪本 康	毯	さきがけ / 阪大院理			
領域 7: 分子性固体	分子性固体・有機導体	宮内 雄	華平	京大エネ研	山下	智史	阪大院理
	分子性固体・有機導体	山下	穣	東大物性研	松井	弘之	東大新領域
領域 8:強相関電子系	磁性	谷田 博		広大院先端物質	八島	光晴	阪大基礎工
	磁性	松浦 弘	ム泰	東大院理	三澤	貴宏	東大院工
	低温	池内 和	『彦	CROSS	清水	直	理研
	低温	酒井 英	英明	阪大院理	太田	幸宏	原子力機構
	低温	町田	洋	東工大院理工			
領域 9:表面・界面、結晶成長	結晶成長	神子 公	男	東大生産研	阿久酒	#典子	大阪電通大
	表面・界面	八田振一	一郎	京大院理	深谷	有喜	原子力機構
	表面・界面	平原	徹	東工大院理工	國貞	雄治	北大エネマテ
領域 10:構造物性(誘電体,格子欠陥,	X線・粒子線	澁谷 憲	誘悟	東大院総合		弘喜	農工大工
X線・粒子線、フォノン)	X 線・粒子線	幸田 章	金宏	高エネ機構	幸田	章宏	高エネ機構
	フォノン	中川 幸	幸子	岡山理科大			
	格子欠陥	若生	啓	横浜創英大	弓削	是貴	京大院工
	誘電体	松浦 直	人	CROSS	西松	毅	東北大金研
領域 11:物性基礎論・統計力学・流体物理・	統計力学・物性基礎論	乙部 智		原子力機構		勇輝	名大院情報
応用数学・社会経済物理	統計力学・物性基礎論	手塚 真		京大理		健太	東大院工
	統計力学・物性基礎論	寺前順之	2介	阪大院情報	新里	隆	一橋大
	応用数学・力学・流体物理	清水 雅	推樹	阪大基礎工	神中	俊明	慶大自然科学教育セ
領域 12:ソフトマター物理・化学物理・	ソフトマター物理	及川 典		首都大理工	住野	豊	東理大理
関係12・ファイ・アー物生 12丁物生		上位成大	〈 子	東大物性研	川﨑	猛史	名大院理
生物物理	化学物理	古府麻衣					
	化学物理 生物物理			分子研 / 総研大	斉藤	稔	東大院総合
		奥村 久雨宮 高	仕	分子研 / 総研大 日大理工		稔	東大院総合
生物物理	生物物理	奥村 久	仕		斉藤		東大院総合 酪農学園大

武児室世話人	託児室世話人
--------	---------------

第71回年次大会(2016年) 付設展示会

主催:一般社団法人 日本物理学会

運営:(株)科学技術社

会場: 東北学院大学泉キャンパス

会期:2016年3月19日(土)~3月22日(火)

展示時間:午前9時~午後5時(3月22日のみ午前9時~正午)

出展者一覧【2016年2月15日現在】

●機器関連

(株) アールデック

応用光研工業 (株)

オックスフォード・インストゥルメンツ (株)

サエス・ゲッターズ・エス・ピー・エー

(株) サムウエイ

(株) ジーテック

シエンタ オミクロン (株)

(株) ジャパンセル

泰榮エンジニアリング (株)

大陽日酸(株)

仁木工芸 (株)

日本オートマティック・コントロール (株)

日本カンタム・デザイン (株)

浜松ホトニクス(株)

ロックゲート (株)

●書籍関連

IOP 英国物理学会出版局

(株) 朝倉書店

カクタス・コミュニケーションズ (株)

(株) 紀伊國屋書店

共立出版 (株)

(一社) 日本物理学会

(株) 吉岡書店