
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN Vol. 17, SUPPLEMENT A-II, 1962 
INTERNATIONAL CONFERENCE ON COSMIC RAYS AND THE EARTH STORM Part II 

II-5·5. On the Streaming of a Plasma through the 
Geomagnetic Field* 

Erik T. KARLSON 

AB Atomenergi, Stockholm, Sweden 

Alfven's electric field theory of magnetic storms and aurorae is based 
on the assumption that the sun emits beams of ionized gas. The motion 
of such a beam through the interplanetary magnetic field is associated 
with an electric field across the beam. If the motion of such a beam, 
when it enters the geomagnetic field is analysed by means of the equations 
of motion for single particles, the results give a fairly good picture of 
magnetic storms and aurorae. As the motion of the particles in the 
equatorial plane produces space charges which are not taken into account 
these results are valid only if these space charges leave the equatorial 
plane along the magnetic lines of force. It is not evident, however, that 
the charged particles could leave the equatorial plane so fast that the 
electric field is influenced. Here we study the motion of charged particles 
in the equatorial plane under the assumption that no space charges leave 
this plane along the lines of force. The main results from this treatment 
agree qualitatively with Alfven's results. 

§ 1. Introduction 
The electric field theory of magnetic storms 

and aurorae has been developed in a series 
of papers by Alfven'1 and Block21• The 
theory is based on the assumption that the 
sun emits beams of ionized gas. The beam 
is thus emitted from a region where a mag­
netic field exists, and therefore should be 
magnetized. Such a beam can move across 
the magnetic field through the influence of 
the electric field from the polarization of the 
beam (Chapman and Ferraro81) . If the 
motion of the charged particles in the equa· 
torial plane is analysed by means of the 
equations of motion of solitary particles, it 
is found that there is a "forbidden region" 
around the dipole which the electrons can 
not reach. At the border of this region the 
electron density has a maximum. The mo· 
tion perpendicular to the equatorial plane is 
oscillatory along the magnetic lines of force. 
If the amplitude of these oscillations is large 
enough, the electrons can hit the earth's 
surface. The line on which the largest 
number of electrons hit the surface of the 
earth is thus the one which is obtained if 
the border line of the forbidden region is 
projected along the magnetic lines of force 
upon the surface of the earth. This line is 

* This paper was read by H. Alfven. 

identified with the auroral zone. The vari­
ation of the polar distance of this curve is of 
the same type as the observed time variation 
of the magnetic polar disturbance and of the 
aurora. 

However, for the above results to be true, 
it is necessary that there are no space 
charges in the equatorial plane large enough 
to give a significant change in the electric 
field. From the drift equation it is seen that 
the inertia term gives rise to large space 
charges, if the particle density is not very 
low. Thus it is necessary that the space 
charges leave the equatorial plane very 
quickly along the magnetic lines of force. 
This is hindered by the mirror effect of the 
magnetic field. Therefore, the assumption 
that the space charges do not affect the mo· 
tion in the equatorial plane is not a very 
natural one. In fact, it has been argued 
that if the space charges are taken into ac· 
count, the motion might be entirely different 
(Chapman'1 Cowling51) . 

Here, the particle motion in the equatorial 
plane is studied with the space changes 
taken into account, under the assumption 
that no space charges leave the equatorial 
plane along the lines of force. This, certain· 
ly, does not correspond very closely to reali· 
ty. However, we thus get solutions for two 
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extreme cases, one, where all space charges 
leave the equatorial plane immediately 
(Alfven's solution), and the other, where no 
space charges leave this plane (the solution 
presented here). The real situation should 
be somewhere between these two. Thus if 
the results for the two extreme situations do 
not differ too much, we will get quite a 
good picture of what happens in the real case. 

Before presenting the theory we make a 
few remarks on the situation treated. The 
first one is that we treat only the station­
ary case, which means that we get infor­
mation on the main phase of a magnetic 
storm only. The second remark is that we 
throughout neglect the induced currents, and 
treat the magnetic field as given. It turns 
out that, under these assumptions, it is 
essential for the existence of a solution that 
there is an interplanetary magnetic field. 
The motion for the case of no interplanetary 
magnetic field is completely different from 
the case of a small, but non-zero, magnetic 
field, and the neglect of this field is thus 
definitely not allowed. It is also essential 
that the particles in the beam should have 
a non-zero temperature. 

The present investigation was started not 
to study magnetic storms, but to understand 
the behaviour of proposed thermonuclear 
device. Therefore, the magnetic field used 
is not a dipole field . The motion in a dipole 
field will be investigated in later paper*. 

§ 2. Outline of the theory 
We start with the assumption that the 

motion of a charged particle (or, more exact­
ly, the motion of its guiding center) is given 
by the drift equation (Alfven 1950)1) : 

zt=-_!!_ x [ eE-p.pB-Mdu] (1 ) 
eB2 dt 

Here M is the mass of the particle, e its 
charge, and p. the magnetic moment. Now 
it is easily seen that if the last term (the 
inertia term) in ( 1 ) is neglected, then along 
a particle trajectory the particle density n 
will be proportional to the magnetic field 
strength B. If the inertia term is taken into 
account, the density will be different for 

* Preliminary results from this investigation 
show the same general character as for the field 

-~ treated here. 

electrons and ions. This means that we get 
space charges which modify the electric field. 
Therefore, we have to treat the problem in 
the following way. The electric field in ( 1 ) 
is left unspecified. We then assume that the 
inertia term gives only a small correction to 
the motion. This means that we can solve 
eq. ( 1 ) by making a formal expansion in 
powers of M /e . Here we take only the first 
and the second term into account. This 
gives a formal expression for the drift ve­
locity, from which we can deduce an expres­
sion for the particle density. If we introduce 
the resulting charge density in the Poisson 
equation, we thus get a self-consistent so­
lution. 

§ 3. The particle density and the Poisson 
equation 

In the equatorial plane the magnetic field is 
orthogonal to the plane. A beam of charged 
particles (ions and electrons of approximately 
the same density) is coming in from the sun, 
which is taken to be far away in the y­
direction. The electric field in this beam is 
given by Ex= -B. U11 , where U11 is the drift 
velocity, and B. is the interplanetary mag­
netic field . As the particles come from a 
region where a magnetic field exists, we 
assume that they have magnetic moments, f.l • 
for the ions, p.. for the electrons. 

In ( 1 ), we introduce a generalized poten­
tial ¢ , given by: 

E = -flrp 
</J=rp + p.Bje } 

In the stationary case we have 

(2) 

du 1 
dt+(u·fl)U= zfl(U2)-u X (f7 X u) (3) 

Introducing ( 2 ) and ( 3) in ( 1 ) we get 

u{1 + e~2 [B · (vx u)l} =! 2 Xfl(<P+ ~:
2

) (4) 

If you now put u =(B /B 2) X fl</J in those terms 
of ( 4 ) that come from the inertia term 
we get, after some vector manipulation: 

u 1 +-- (7 2</J----{ 
M ( 1 dB acp )} 
eB 2 B dr ar 

= B X v(<P + M (V¢)2) 
B2 2eB2 

( 5 ) 

From ( 5 ) we see that u is orthogonal to the 
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vector v (cp + ~~r;:)
2

). Thus the charged 

particles move so that the quantity 

IJf =c/J/M(V¢)
2 

is a constant of the motion. ~ 
2eB2 

If we now set up the expression for the 
number of particles streaming between two 
IJf -lines, we get an expression for the parti­
cle density along a IJf -line (for a detailed 
derivation see Karlson6>, hereafter referred 
to as 1): 

n =no B(r)[1 +~(r2cfJ- _!_dB_ acp )] ( 6) 
Bo eB2 B dr or 

where n0 is the particle density for y= +oo. 
From ( 6 ) we get the charge density 

p=e(n,-n.) = --0
- M (V2cp, n .,.r[ 

BoB 

__ 1_ dB acp, )- m(r2¢.- _!_dB acp·)] C 7 ) 
B dr or B dr or 

If we put this expression into the Poisson 
equation, if we neglect the electron mass, 
as compared to ion mass, and if we assume 
that the density is high in the sense that 
noM/c.oBoB~1, we get the equation 

V2cfJ, - (1/B) (dB/dr) (acpifiJr) = o ( 8) 

This equation is separable, and its general 
solution is of the form 

~ 

¢•= 2:: Rm(r) [am sin mO+bm cosmO] ( 9) 
m = O 

Now it is easily seen that if there are no 
forbidden regions, so that Rm (r) has to be 
regular at the origin and at infinity, then 
there is no solution for any value of m, ex­
cept for m=1 (this solution is not regular at 
infinity, due to the existence of an electric 
field there). The equation for m = 1 was 
solved numerically for a field of the type 

{
B(r)=B0 [1 +(a/2)(1 + cos n-r/ro)] r~ Yo (

1
0) 

B(r)=Bo r>ro 

for different values of a (a = 4, 9, 19 and 39). 
Figs. 1 and 2 show the resulting first order 
trajectories for ions and electrons, for the 
cases a = 9 and 39, respectively, with the 
value p..Bo!eEoro= 0.05. In Figs. 3 and 4 we 
have plotted the electric field in the x-di­
rection, and the resulting drift velocity on 
they-axis. 

When the drift velocities are known, it is 
possible to compute the resulting currents. 
Here we give only the expression for the 
current density. A detailed derivation is 

X 

Fig. 1. Electron trajectories (broken lines) and 
first order ion trajectories (full lines) for the 
case a=9. One second order ion trajectory is 
also shown. 
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Fig. 2. Electron and first order ion trajectories 
for the case a=39. 
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Fig. 3. The electric field in the x-direction on 
the y-axis for different values of a . 

u, 

Fig. 4. The drift velocity in the y-direction on 
the y-axis for different values of a. 
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Fig. 5. The current distribution for th: case 
a=9 in units MnoEo 2/Bo3ro. 

given in L We have 

(lla) 

j 111 = 2no(P.i + p..) B X /1 B 
Bo B 

(llb) 

- 121 _ noM B ( 17¢;)2 

J - 2Bo B X /1 B (llc) 

In Fig. 5 we have plotted the {}-component 
of j<11

, j<21 and j for 8 = Tr/2 in units 
MnoEo 2/Bo3Yo for a = 9. 

§ 4. Discussion 

The problem treated here is certainly not 
a very good model of the phenomena associ­
a ted with a magnetic storm. We have used 
a number of approximations, of which some, 
e.g. the use of the drift equation, the as­
sumptions, of "high" density, and the neg­
lect of collisions seem to be fairly good 
ones. However, we also neglected the in­
fluence of the induced currents, we used a 
field, which does not resemble the real field 
very much, and we have a solution only for 
the case that there are no forbidden regions. 
In a later paper we will treat the problem 
without all these bad approximations, but 
here we want to point out what conclusions 
can be drawn from our very crude modeL 
The first one is that if the interplanetary 
magnetic field is taken to be zero, the elec­
tric field is zero at infinity, and there is no 
solution at all. Thus the existence of an 
interplanetary magnetic field is essential for 
the existence of a solution. If this field is 
taken into account, the particles can move 
into the stronger magnetic field even when 
the induced currents are not taken into 
account. If the interplanetary magnetic field 
is neglected, the beam can not move into 
the stronger field, but must push the field 
before it. Furthermore, it is necessary for 
the treatment here that the particles in the 
beam should have a non-zero temperature. 

Thus we know that the polarized beam 
can penetrate into the strong magnetic field. 
We also know that there is a forbidden 
region if the inhomogeneity is strong enough 
(which is always the case for a dipole field, 
of course). The particle density is propor­
tional to the magnetic field strength, and 
thus has a maximum at the border of the 
forbidden region. Furthermore, we get two 
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different ring currents, one of which is 
caused by the density gradient, and tends to 
decrease the magnetic fie ld. The other one 
is an inerita current, and its direction depends 
on the model used. All these facts agree 
with the result from the single particle 
treatment, and are essential for the expla­
nation of magnetic storms and aurorae from 
the electric field theory. 
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Discussion 

Davis, Jr., L.: In your model I believe that there is an electric field at the center 
of the region of higher field. This means that there would be a drift of the plasma 
there. Thus this model is not particularly close to the geomagnetic case where there 
is very little drift over most of the region occupied by the geomagnetic field. 

Alfven, H.: The model is not meant to give a detailed picture of what happens 
in the earth's magnetic field during a storm. The importance of the paper in this 
connection is that it shows how essential it is to put H=t=O and T=t=O. This means 
that the usual hydrodynamic or hydromagnetic treatments are inadequate. 


