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Discussion

Zatsepin, G. T.: The idea of Emelyanov and Rosental is very nice, but the basic
idea of Landau’s hydrodynamical theory (p/e=1/3) has no experimental foundation.
Experiments show that p/e<1/3.

Zhdanov, G. B.: Yes, I agree with you, but the main point of the authors was to
show that there is no direct contradiction between the predictions of the Landau
theory and the experimentally observed distributions.

Namiki, M.: I wonder that the constancy of { was assumed overall processes from
very high temperature to very low temperature. Can we consider the results to
have only a qualitative meaning ?

Zhdanov: I suppose your point of view to be correct.
qualitative conclusions.

Yamaguchi, Y.: Are there any difference between z-N and N-N interactions in
this theory ? For example, do two fire-balls occur also in z-N collisions with fair
probability ?

Zhdanov: I suppose that there must be no significant difference between #n-N and
N-N interactions in this respect.

The authors get only
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The ““fire ball”’ observed in multiple pro- interaction part may be separated from the

duction of particles is interpreted and an-
alysed as a correlated assembly of produced
particles like superfluid. It is shown that
the momentum spectrum of produced mesons
has a form dk/k* assuming A¢* for the final
meson-meson interaction Hamiltonian. A
possibility of the many fire-ball model is
briefly discussed. Before discussing these
problems a possible reduction of the S-matrix
element or the cross section of the overall
process is presented, in which its final

part of high energy interaction in short
collision time.

§1. Introduction

About twenty years ago Heisenberg” and
others expected that the multiple production
of particles in super-high energy phenomena
would inform us about the interaction me-
chanism at a short distance among element-
ary particles or the fundamental principle as
symbolized by the ‘‘universal length”’. Ne-
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vertheless, such a naive anticipation has not
been achieved yet. It is true that the present
accuracy and statistics of experimental data
are not enough to derive some definite con-
clusions from the phenomena, but one may
say that the essential reason of the above
situation is the smearing effect of the trou-
blesome final-state interactions among pro-
duced particles. It seems to us that the final-
state interactions, being rather low energy
interactions, smear the true aspect of the
elementary interactions at super-high energy
and then are responsible for the final distri-
butions of produced particles. Another reason
may be that considerable parts of the phe-
nomena are fairly well explained by semi-
kinematical arguments®. If all the phe-
nomena were understood through the final-
state interactions and semi-kinematics, we
could derive few knowledges of the elemen-
tary interactions at super-high energy*. In
order to see the characteristic feature of the
elementary interactions at super high energy,
we should separate the kinematical effects
and clean up the smearing effects of the final
interactions from the experimental data.

As an important effects of the final-state
interactions, Fermi® and Landau® considered
that they bring produced particles to be in
equilibrium or in local equilibrium. Niu®
also assumed in his model that mesons in
each fire-ball are subject to Planck’s distribu-
tion law. Following Landau, the meson cloud
at the final stage may be considered to be
in a frozen state with a very low tempera-
ture. This is consistent with the assump-
tion in Niu’s model. Now one may expect
that the meson cloud (or the fire-ball) with
a very low temperature is in a correlated
state like the condensed one of superfluid.
In the present note we shall study the cor-
relation effects of Bogoliubov’s type on the
final distributions of produced particles. The
purpose of this work is to increase the de-
tailed knowledge of the final-state interaction
effects.

Before entering into this work, we shall
write down a possible reduction of the S-

* It is noted that one extra meson, which has
extremely high energy in the so-called ‘‘d-group’
observed by Tokyo group of jet study, is evidently
non-thermal and never smeared by the final state
interactions.
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matrik element and the cross section of the
overall process.

§2. A possible reduction of cross section

Suppose that the Hamiltonian governing the
overall process can be written as H=H,+H',
in which H, is the Hamiltonian governing
the asymptotic processes containing the final-
state interactions and H’ stands for the super-
high energy interaction in the collision time.
We do not know whether the interactions in
the collision time can be distinguished from
others and ‘described in the conventional
Hamiltonian formalism. However, if the
collision time is much shorter than the final
interaction time, then it may be possible
to make use of the above scheme of de-
scription at least in an asymptotic sense.

Now by denoting an eigenstate of H be-
longing to its eigenvalue E; by ¥;*, the S-
matrix element of the process (I-F) is de-
fined by Su=<¥r"|¥:*") or by

Sri=—2ri6(Er— E1)}{O@r O |H'|T1 >, (1)
where @;* is the eigenstate of H, belong-
ing to its eigenvalue E;. The superscript
(%) corresponds to the well-known boundary

conditions. Equation (1) can be modified as
Sri1=—2ri0(Exr— E1X @ O | T |0 D>, (2)
where T is the modified 7-matrix. Assum-

ing a separated motion of nucleons and meson
clouds after collision, we can divide H, into
two parts as Hy=H,+Hy and factorize @; "
in the way @;® =y;¥¢;®), Here H,p;* =
Eime:® and Hyyi® =E;my:'Y, where E;=
Eim+E;m. It is noted that ¢;"=UL0,
—o0)p; and ¢; ) =U," (0, 0)¢;, U, being the
time evolution operator governed by H, and
¢; the free meson state. Now we make a
plausible assumption about the form of 7T,
that is, T=§, aA;® ™, where A;™ is a

combination of meson operators and /™ of
nucleon operators, respectively, and ¢, is a
c-number. Thus we can write the rate of
transition probability as

WF1=2ﬂ5(EF_EI>
X|35 gl Us(0, 0) A1 Ux(0, —0)|¢hr)
¥ IET ati (3)
where ¢r is a free meson state containing N
mesons and ¢; the free vacuum state.

It is plausible that the final-state inter-
actions bring each produced meson cloud in-
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to a model state, say ¢mod, insensitive to the
initial state and the production mechanism.
Therefore we can put

{Pr| Ux(0, 0) A1 ™ U0, —0)|pr>
2 @r| Un(00, to)|Pmoay
X @Pmoa| Us(to, 0)A: ™ Ur(0, —0)|dry  (4)

Here the separation is to be insensitive to
the choice of #, in a broad range, so that 7,
is put zero in the first factor and put in-
finity in the second factor in an asymptotic
sense. Using the definition given by Gell-
Mann and Goldberger® for U(co,0) and the
random phase approximation for its matrix
element, we can easily obtain the formula

{r| Un(o0, 0)|¢moa)
:( Tuid )(Emm —Enoat+ ZTiqod >_l<¢F|s0mod> ;

where Emoa and tmoa are, respectively, the
energy and the life time of the model state.
Then wer becomes

Wr1= Zﬂa(EF— E[)

X [ o —Emod>|<¢ywmod>12]

x]; €1 Pmod| Un(00, 0) A, ® U0, — 00) | >
2

X e |9 | D

(5)

where we have used the approximation of
the long life time. The model state may be
a mixed state. In such a case the corre-
sponding modification should be required in
Eq. (56). In the case of two or more fire-
balls, Eq. (5) becomes a sum of the corre-
sponding terms.

Now we can derive the final distributions
of produced particles from Eq. (5). The mo-
mentum spectrum is defined by

nk)=CS N = 5(w,,+§- w,,].—E,,m>
N ks J=3

,,,,, kN

><|<k’ k2’ "')kN|SDln0d>|2 ’ (6)

where C is a normalization constant and wz=
the energy of a free meson with momentum
k, and we have written ¢r in a more detailed
form |k, ks, -+, ky). Discarding the con-
servation law of energy in Eq. (6), we obtain
the spectrum

=<¢m0dlakTak|S0mod> ’

(7)
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where ap is the annihilation operator of a
free meson. Thus the final distributions of
produced particles can be calculated only by
the model state vector ¢ma representing the
fire-ball. The relative probability of finding
a given multiplicity and inelasticity depends
upon the last factor of Eq. (5), that is, the
production mechanism of the fire-ball. It is,
however, remarked that even in the last
factor of Eq. (5) the elementary interactions
are smeared to some extent by the final-state
interactions.

§ 3. Distribution of produced particles.

We may consider a model state of the
fire-ball to be an analogue of the compound
nucleus state in the theory of nuclear re-
actions. Mesons in a fire-ball move in a
limited volume, collide with each other and
subsequently fly away as free particles. It
is acceptable that the linear dimensions of
the fire-ball may be of the order of (1/g)N'/3,
N being the multiplicity. First let us con-
sider an idealized problem in which both the
volume and the number of mesons are in-
finite but the meson density remains finite.
Since temperature of the system is so low
that the number N, of mesons with zero
momentum is very large, we can derive the
model Hamiltonian from H, by keeping only
its first two leading terms in the order of
N,. The model Hamiltonian has a structure
similar to that in the problems of superfluid,
which can be diagonalized by the famous
Bogoliubov transformation ap=wurar+vial,.
Here a; and a; are, respectively, the annihil-
ation operators of a quasi-particle and a free
particle with momentum k. wuz; and vx are
real even functions of £ and satisfy the re-
lation uz*=14uvg?.

Here we identify the fire-ball with a mixed
state of low lying states with temperature
of the order of the meson mass. In this
case the expectation value of the meson
number becomes

N=N,+3 02+ wi[l1+20:2], (8)
=i k70
where w; is the Planck’s weight factor.
Equation (8) implies that the momentum
spectrum is a superposition of the ground
state distributions, the first two terms, and
the Planck’s distribution of quasi-particles,
the last term. Taking into account the fini-
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teness of the system, we should read by N,
the number of mesons with the minimum
momentum of the order of (¢/N/?). For in-
teraction of the type A¢*, it is easy to show
that v;* is a function proportional to 2 for
k>p. By approximating the summation by
the integral, it is concluded that the mo-
mentum spectrum has a form of (dk/k?) for

-

Rimax

Solid line for the

Fig. 1.
resultant curve,

Momentum spectrum:
broken line for the ground
state distribution and dotted line for the quasi-
particle distribution.

k>p. The spectral curve is given in Fig. 1.
The cut-off at kmax of the resultant spectrum
comes from the o-function of Eq. (6). One
may regard Amax as a momentum of the order
of #N in the center-of-mass system of a
fire-ball.

§4. Discussions on another possibility

We have so far discussed the system with
a large volume but low temperature. Here
we discuss briefly emission of mesons from
the system with a small volume but high
temperature 7. Because of high temperature
we no longer assume that N, is large. The
method suggested by Bogoliubov and Zubarev®
permits us to define the temperature de-
pendent normal modes of quasi-particles,
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whose momenta distribute over a discrete
spectrum because of a small volume. The
number of mesons transported by one quasi-
particle with momentum k is 1+42v;?, which
is unity for k>7T and several for k<T.
(Note that vz is a coefficient of the Bogo-
liubov transformation to a temperature de-
pendent normal mode.) Now let us suppose
that immediately after the collision a small
and hot meson compound is left at rest in
the center-of-mass system and subsequently
free mesons are emitted from it through the
quasi-particle modes. Such a scheme may
be consistent with an interesting analysis
recently given by Hasegawa”. Since excita-
tion of the quasi-particles at high temperature
originates in considerably high energy in-
teractions, one may expect to derive some
knowledge of high energy interactions from
the experimental data of Hasegawa’s type.
Interpretation is, of course, open to other
possibilities.
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Discussion

Zhdanov, G.B.: Have you any consideration about the life time of the fire-ball (in
the frames of your method of calculations) or should it be taken from the experiment?

Namiki, M.:

I have not calculated the life time of the fire-ball, but it can be cal-

culated in the framework of our theory. Certainly the life time of the fire-ball is

longer than the Compton period corresponding to the fire-ball mass.
I think that, if the masses of the fire balls distribute over continuous spectrum, it

is hard to determine the life-time from the experiment.






