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The dynamical behavior of the ferromagnetic spins is studied on the basis of the 
statistical mechanics of irreversible processes. A macroscopic equation determining the 
change in time of an inhomogeneous magnetization is derived with an explicit expression 
for the frequency spectrum and damping constant. With the use of the general ex
pression thus obtained, the following problems are discussed on the basis of the Heisenberg 
model; (1) the pair correlation of spins, (2) the frequency spectrum and damping constant 
of the spin waves, (3) the damping of the z component of the magnetization. 

In the spin wave region, a straightforward reduction of our expression leads to the 
spin wave frequency and damping equivalent to Dyson's theory of spin waves. It is 
shown that, in the vicinity of the Curie point and in the paramagnetic region, the 
motion of the z component of the magnetization obeys the diffusion equation. The 
diffusion constant thus obtained vanishes at the Curie point and is in good agreement 
with the experimental values observed by Ericson and Jacrot for iron above the Curie 
point. 

As reviewed by Dr. Lowde and reported 
by Dr. Riste and by Dr. Jacrot in the Joint 
session, the neutron scattering experiment 
reveals interesting dynamical behaviors of 
the ferromagnetic spins. For instance, it 
turned out that the spin diffusion constant 
of iron vanishes at the Curie point. 1' Recent
ly Dr. de Gennes extended van Hove's theory2

' 

to give an exposition of this phenomenon.3
' 

His treatment, however, is still phenomenol
ogical and a microscopic basis of his theory 
remains to be elucidated. 

On the other hand, the theory of spin waves, 
including the spin wave damping, was esta
blished by Dyson." However, it is not clear 
how to obtain the damping constant of the 
longitudinal component, even if we know the 
dynamical interaction between spin waves. 

In this talk, therefore, I would like to dis
cuss the damping of the longitudinal -com
ponent of an inhomogeneous magnetization, 
and also some related topics, in the spin 
wave region, in the vicinity of the Curie 
point and in the paramagnetic region, mak
ing use of the statistical mechanics of 
irreversible processes. 5 

•
6

' 

The dynamical behavior of the ferromag
netic spins is described by the dynamical 
susceptibility given by5

' 

Xk~(t) = (gp.B)2 (Sk~(t) , Sk~*) , (a=O, ±), ( 1) 

spin operator. The bracket notation above 
is defined by 

(A,B) =~:dA (elo.HA e-1-.HB) =(B,A), (2) 

(G) =TrGe- flHjTr e-fJH, (3) 

where His the total Hamiltonian which con
sists of the Zeeman energy (with the Zeeman 
frequency wo) for a constant field in the z 
direction and the exchange interaction Ho 
between spins. 

Now we define the generating function E 
by taking the dynamical susceptibility divid
ed by its initial value: 

Ek~(t) = (Sk~(t) , sk~*) !(Sk~, sk~*) , ( 4) 

=1 +it(aw0 +wk~) +O(t2) . ( 5) 

Equation (5) is the expansion in powers of t 
for a small time interval t, and the frequency 
wk~ is given by 

( 6) 

where 

( 7) 

The Fourier components of the magnetization 
density form a set of macroscopic state varia
bles complete enough to describe macroscopic 
magnetic disturbances. This situation leads 
to the following: 6

' 

where sk~ is the Fourier component of the a Ek~(t)=exp [it (awo+wk~) -t rk~], ( 8) 
spin, a=O denoting the z component of the where 
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rk""= [ dt exp ( -it(awo+wk"')) 

X (Ik"'(t ), lk"'*)!(Sk"', Sk"'* ) ( 9) 

where 

Ik"'=Sk"'-iwk""Sk"'· (10) 

Equation (8) is the asymptotic equation which 
is valid for times t larger than the correla
tion timer. of the fluctuating torque k». The 
correlation time r. is of the order of magni
tude of li/], ] being the magnitude of the 
exchange interaction. The quantity wk"' given 
by (6) expresses the frequency spectrum of 
the collective oscillation of the spins. The 
imaginary part of rka. yields the shift of the 
frequency and becomes appreciable in the 
vicinity of the Curie point. The real part 
of rk"' leads to the damping of the collective 
oscillation. 

Denoting by ] (q) the Fourier component 
of the Heisenberg exchange interaction and 
introducing the notation, 

] (q,q')= ](q)- ] (q'), ](q)=] 2 1 exp (iq·r1), (11) 

we can show easily that (6) leads, with a 
simple approximation, to 

(12) 

(13) 

a being the equilibrium value of the z spin 
component per ion, and, with a higher ap
proximation in the spin wave region, to 
wk-::::.2S](O,k)+(2/N)2nq [](q,k+ q)- ](O,k)], (14) 

q 

where 
n q= 1fexp [2,BS](O,q)] - 1, (15) 

and S is the magnitude of the spin. Equa
tion (13) agrees with Bogolyubov and Tjabli
kov's,7l and (14) agrees with the one obtained 
by Keffer and Loudon, s> and shown to re
produce Dyson's theory of ferromagnetism.•> 

The present expression for the frequency 
spectrum is valid in the vicinity of the Curie 
point, and also serves to determine the static 
correlation of spins even above the Curie 
point. A simple transformation of (6) leads 
to 

2Na 
Xk±j(gp.B)2=(Sk±, S k±*)= (16) 

-wo+wk 

Using the fluctuation-dissipation theorems> 
and neglecting the damping effect, 

( {Sk±,Sk±*})' .Nacoth [,8(-wo+wk)/2], (17) 

where {A,B} =(AB+ BA)/2. Above the Curie 

point, (17) leads to 

<{s 0 sO*}) ' NkBT (T T ) 
k ' k , (gp.B)2 + (!!!!:_) ' > c ' 

X a Wo = O 
(18) 

x being the susceptibility. Since (wkfa)cx k2 

as k-?0, (18) leads to a general form for the 
asymptotic behavior of the spin pair correla
tion, determining van Hove's parameters2> as 

2' S(S+1) 1' Wq ( ) 2 I (19) r, . 3k T Im --2 ' IC, r, = xo x, 
B q~o aq 

where 
(20) 

Below the Curie point, (17) leads to 
( {Sk±,Sk±*} ) ' .Nacoth[,Bwk/2], (21) 

---+ NS(S + 1) 1 
3r,2 Ji2 as k-?0 . 

(22) 

It should be noted that the above equations 
from (16) to (22) are independent of the spe
cialized models of the ferromagnetic spins. 

Next we calculate the damping constants 
from (9). In the spin wave region, the time 
integration can be easily carried out to yield 

r k+= Re(rk+)=('f;2 )q~)J(q,k-q)+ ] (k-q-r, q 

+r))2 o(wk+ wr-Wr+q-Wk- q) 
X {nr(n r+q+ 1)(nk- q+ 1) 
- (nr+ 1)n r+q n k-q} ' 

Tk 0 4~Sigp.:)
2 

2 [J(q,k-q))2 o(wq-Wk- q) 
B Xk q 

x n q(n k-q+ 1) • 

v N (gp.B)2 k3 

16rrN Xk0 exp [(,8/4)Dk2]-1 

(23) 

(24) 

(25) 

where wq=Dq2• The spin wave damping rk+ 
is just one half of the transition rate of the 
number of spin waves k obtained from 
Dyson's dynamical interaction by using the 
kinetic treatment with Schlomann's assump
tion. 9> As you can see, the damping of the 
z spin Tko has a quite different feature from 
the spin wave damping (23), and is out of 
the usual kinetic theoretical understanding. 

In the vicinity of the Curie point and in 
the paramagnetic region, it is very difficult 
to carry out the integration of the time cor
relation exactly. So we assume the Gaussian 
decay, 

(h 0(t) , Ik0*) oc exp(-t2gk2), (26) 

in para,llel to the treatment of the exchange 
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narrowing in paramagnetic resonance absorp
tion. Then the z damping constant takes 
the form, 

0 _ (Ik0
, N* ) Vrr _ I (iko jko*) 

rk - (Sko, sko*) 2gk , gk-f 2(Ik;, ho*) . (27) 

The bracket SS means the longitudinal static 
susceptibility and has a singularity at the 
Curie point: 

(s o s O*) = Nscs + 1) JJj_ 
k ' k 3kB T Xo 

ex ! (T~ T c) ' T > T c, (28) 

2(Tcl-T) , T < T c. 

The bracket I I means the static correlation 
of the torque, and has no singularity at the 
Curie point, being given by 

(Ik0 ,Ik0*)=(k2/3)Nb 2kBT c(3.1/z) at T = T c. 
(29) 

This implies that the correlation of the torque 
expresses a microscopic motion and is not 
affected seriously by the change of the long 
range order. The quantity g means the 
inverse of the correlation time of the torque 
and may be regarded to have no singularity 
either, being, in the classical limit, given by 

gk = Cf/h)V8z~S(S+l)/3, (30) 

~=1- (39/5z2) [1+3/26S(S + l )]. (31) 

Therefore, the damping constant vanishes at 
the Curie point as a result of the singularity 
of the susceptibility. This agrees with the 
phenomenological investigation by van Hove 
and de Gennes. 

Recently, Ericson and Jacrot observed the 
critical magnetic scattering of neutrons by 
iron above the Curie point, and determined 
the spin diffusion constant in the vicinity 
of the Curie point as 

A obs =1.8 x 10- 5(T - T c) cm2/sec. (32) 

Inserting (28), (29) and (30) into (27), we ob
tain, for iron above the Curie point, 

A tbeor = 1.3 x 10- s (T- T c) cm2/sec. , (33) 
where we have assumed ] = 200 kB for the ex
change interaction. This is in good agre
ement with (32). 

The dynamical behavior of the ferromag
netic spins is a typical example of the 
macroscopic body. I hope the present method 
provides us with a powerful means to treat 
the dynamical behavior of various collective 
modes, such as excitations in liquid He II. 
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DISCUSSION 

R. KuBo: Is it necessary to take the shift term into account in your calculation 
in order to get Dyson's result for the ferromagnet spin wave system? Or, the first 
approximation of the frequency is enough? 

H. MoRI: The shift of the spin wave frequency coming from the imaginary part 
of Fk"' is not necessary to obtain Dyson's result, but becomes appreciable near T c. 




