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The kinetics of an Ising model is formulated 
by the method of thermodynamics of irre
versible processes. From the expression for 
the entropy production generalized forces and 
fluxes are determined. By introducing kine
tic coefficients which satisfy the Onsager re
lation, the kinetic equations are obtained. 
By solving these equations a set of relaxa
tion times is obtained. In terms of these re
laxation times two initial value problems are 
solved. 

For consideration we take a set of N iden
tical Ising spins of magnitude 1/2. In ther
modynamic equilibrium these spins behave 
similarly, and one can discuss the long range 

or the short range order. In a time depen
dent phenomenon, this is not the case and 
all spins behave differently at a given in
stant of time. There is a certain phase re
lation between motions of neighboring spins. 

We assume the following form for the total 
distribution function: 

f N = Il fn(an) , 

an = ± 1, 
"Zfn(an) = 1. 

This form corresponds to Bragg-Williams ap
proximation in thermal equilibrium condition, 
but here we discuss fluctuations in the neigh
borhood of the equilibrium condition. 

The energy and the entropy of the system are given by 

UN= -[] (a)/2] 2:, 2:, 2:, amanf n(an)f m(am)+UNo(a) , 
(m,n) um u 11 

where ] (a) is the exchange integral between two neighboring spins as a function of lattice 
constant a, and UNo(a) is the lattice energy other than the exchange interaction again as 
a function of lattice constant. 

Deviation of the Helmholtz free energy from an equilibrium value is given by 

where z is the number of nearest neighbors, ao the equilibrium value of a, a0 the equilibrium 
lattice constant and !~' is the equilibrium distribution function. Those equilibrium values 
are found by the minimum conditions for the free energy. 

ao = tanh f3 , f3 = z f (ao)ao fkT, f~0 ' (an) = 2- 1 sech f3 · exp (f3an) • 

By the usual argument we find 

ao = 0 , when kT/z] (ao) = 1 . 

According to the theory of irreversible thermodynamics deviations of the distribution func
tions fm-f~' are regarded as the generalized fluxes. Then one can introduce corresponding 
generalized forces by the following equations 
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Xm(a,n)=o(JF/T )/o(f m- t~>) 

= (k//;,.0>)(/ m-/;:>) -(J/ZT) l: l: aman(fn-/~0>)- T -'(a]/aa) l: l: aman/~0>(a-ao). 
(n) u 11 (n) " n 

In terms of Onsager ~inetic coefficients Lmn, one can set up kinetic equations in the 
following form : 

In the following we assume a single spin-flip assumption. This leads to 

Introducing a new kinetic coefficient w(am, am') by 

the Onsager relation becomes 

By the normalization condition for the distribution function one obtains 

w(+ + )+w(- +)=0, w( + -)+w(--)=0. 

Combining these with the Onsager relations one gets 

w( + + )=-w(-+ )= -lle-fl, 

where ).1 is given by 

w(- -) = - w(+-)= -llefl, 

w( +-)J<0>(- )=w(- + )jto>( + )=2- 1 sech/3 · ).1 

Introducing an instantaneous average (a n) by 

( a,.) = 2: a,. f n(a,.) 

one obtains the following kinetic equation 

d~;> = -2llk cosh f3{(am) -ao} +( llj) cosh {3(1-ao tanh {3 ) ~ { (a 11) -ao} . 

For a simple cubic lattice, we introduce 

a = Zllk cosh f3 , r =(li]/T ) cosh f3(l-a0
2

) , 

then the kinetic equation becomes 

Assuming a periodic boundary condition one introduces a Fourier transform: 

then 

Assuming 

Xtm,=N - 112 l:l:l: ahfLvex p27ri(lJ. +mf1 + nli)/N'13
, 

h fL ~ 
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One obtains 

For illustration we solve a relaxation equation for the linear chain with the initial condition 

( ITm.(O)) = ITo , 

then we obtain 

( 
t 2rrilm) ( IT,.(t)) -ITo=N- 112(1Tt-1To) ~ exp --;;_+~ . 

In the limit N -'>oo we can transform to a continuous variable 

(IT,.(t)) -ITo=(ITt -ITo)e-«tf m(rt) , ( ITN(t )) -ITo = (ITt-ITo)e- «tfo(rt), 

where Im(rt) is the Bessel function of imaginary argument. The spin at the N-th lattice 
point starts with the value ITt initially but approaches ITo with time exponentially. The 
spin at the m-th lattice point starts with the equilibrium value ITo initially but deviates 
from the equilibrium value monotonically until the deviation reaches a maximum then de
creases and eventually approaches the equilibrium value back again. 

It is straightforward to extend to a three·dimensional case and the result is 

The time development is quite similar to that of the one-dimensional lattice. The 
farther the location of the spin (!, m, n) from the origin, the slower the response to the 
excitation. 

The above solution is essentially a Green's function of the problem, one can solve more 
general time dependent problems in terms of this Green's function. 

DISCUSSION 

R. KuBo : Why did you consider the change of the lattice constants ? I suppose it 
has nothing to do with the essential points of the theory. 

T. TANAKA: It is necessary to consider the variation in the lattice constant in 
order to calculate the sound wave attenuation coefficient, but that is not necessary 
for the discussion of the initial value problem. 

R. KuBo : You assumed only the diagonal elements of the matrix of kinetic coef
ficients . May I ask what are the assumptions you made for deriving the difference 
equation of relaxation? 

T. TANAKA : The reason why only the diagonal elements of the matrix of kinetic 
coefficients are retained is to make the dynamical problem as simple as possible. 
This approximation may be called a single spin-flip assumption. One can of course 
include more kinetic coefficients without much mathematical difficulty. 




