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1. Introduction 

Following the establishment of the Bardeen· 
Cooper-Schrieffer theory of superconductivity!) 
as a widely successful model for actual super· 
conductors, considerable progress was made 
in accounting for their diamagnetic proper· 
ties. On the other hand, spin effects in su· 
perconductors are still rather poorly under· 
stood. The reason is that the B.C.S. model 
requires a pairing of conduction electrons in 
quasi-bound states with antiparallel spins, 
and this requirement has so far proved ex· 
tremely rigid. No really convincing alterna· 
tives to such pairing have as yet come to 
light. Among the effects that are very dif­
ficult to reconcile with antiparallel pairing 
we may list the non-vanishing of the Knight 
shift in some superconductors21 as the tern· 
perature is lowered towards absolute zero, 
and the apparent ferromagnetism coexisting 
with superconductivity in some dilute alloys 
of the rare earths, particularly gadolinium, 
in lanthanum and in Yttrium-Osmium· 
Two81 ·'1• Some of the more plausible ex· 
planations of the finite Knight shift•l. 61 rely 
on spin-orbit scattering by surface or volume 
imperfections or impurities. The apparent 
coexistence of superconductivity and ferro· 
magnetism has been ascribed to spiral spin 
ordering71, or, alternatively, to non-uniformi­
ty in the phase through the material. Even 
where some understanding of spin effects 
exists, there are still divergences of opinion. 
For example, the initial decline of transition 
temperature of lanthanum when gadolinium 
is added can be evaluated by perturbation 
theory based on B.C.S. states, but it is still 
controversial if the reduction is due to a re· 
duction in the energy gap or due to a change 
in the order of the transition of the kind 
involved when the magnetic field is applied 
to a bulk superconductor. It is almost cer­
tain that both effects occur simultaneously. 
That is to say, neglecting change of the en­
ergy gap, the free energy difference between 
the normal and superconducting states de· 

clines with increasing spin-impurity content; 
on the other hand the gap declines also. 
But there is disagreement as to which of 
these two effects causes the sample to go 
normal at the least impurity concentra­
tion. 

What is missing in all these problems is 
a really intimate understanding of the effect~ 
of impurities on superconductors. Although 
plausible explanations for the behavior of 
imperfect superconductors were provided by 
Anderson81 in terms of pairing of electrons 
in time reversed states, nothing remotely re­
sembling our understanding of impurities in 
normal metals exists for superconductors. 

The purpose of this paper is to suggest in 
outline how a detailed theory might be con­
structed. In the present paper we shall con­
fine ourselves to non-magnetic impurities, or 
imperfections. (That is not to say that mag­
netic effects are thereby excluded: As is well 
known, the critical field of an imperfect su­
perconductor can be higher than that of the 
perfect one, suggesting that imperfections 
might somehow 'pin' regions of superconduc­
tivity around them). 

2. Generalization of the Hartree-Fock equ­
ations to superconductors 

We postulate an electron gas with an in­
teraction that will be attractive in a certain 
neighborhood of the Fermi surface, and re­
pulsive elsewhere. In addition the electrons 
are subject to a potential V due to a distri­
bution of impurities. The problem is to 
establish a Hartree-like Hamiltonian for this 
system, bearing in mind the innovations in­
troduced by the B.C.S. theory. As is known, 
the ordinary Hartree-Fock Hamiltonian is 
the 'best' single particle Hamiltonian avail­
able for representing the normal electron gas. 
It is 'best' in the sense that the difference 
between it and the true Hamiltonian cannot 
give rise to one-particle excitations above the 
unperturbed ground state. That is to say. 
treating the difference between the true po-
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tential and the Hartree-Fock potential as a perturbation, the perturbation series will not 
contain any excited states with only one electron-hole pair above the ground state. 

It is a simple matter to find such a single particle Hamiltonian for a superconductor, 
remembering that one now has an additional type of c-number to consider; the creation 
(and the destruction) of a pair of electrons in time reversed states. Let ?P"r(r), ?P"1(r) denote 
the up- and down-spin electron field operators respectively. By analogy with the Bogoliubov 
quasiparticles, we introduce a new set of Fermions 

<I>f(w) = ~ [f(r, w)?P"f(r )-g (r, w)?P"!(r )]dv , 

<I>:(w) = ~ [g(r, w)?P"r(r )+ f (r, w)?P"t(r)]dv . } (1) 

The generalization of the Hartree-Fock equations takes the form of simultaneous equations 
for the functions f and g : 

fl2 I 
-

2
m f7 2! - r4+ J V(r, r ')f (r', w)dv' 

- ~ U(r, r ')g (r', w)dv' + Vr(r )f(r, w)=wf(r, w) , 
( 2) 

+ :~ p 2g + p.g- ~ V(r, r ')g (r' , w)dv' 

- ~ U(r, r ')f (r ' , w)dv'- Vr(r )g(r, w)=wg(r, w). 

Here Vr(r) is the impurity potential, p. is the chemical potential, V(r , r ') is the Hartree-Fock 
potential, expressed in terms of the electron-electron interaction v(r, r' ) by 

V(r, r' )= ~ ~ 2g(r', w)g(r", w)v(r, r" )o(r-r' )dv" 

- 2:, g (r', w)g(r, w)v(r, r' ) . ( 3) 
"' 

Finally U(r, r' ) is a new 'superconductive' potential given by 

U(r, r' )= - 2:.icr', w)g(r, w)v(r, r' ) 
"' 

= - 2:, g (r', w)f (r, w)v(r, r ') . 
"' 

(4) 

The last equality in (4) follows from one of the orthogonality relations satisfied by the 
f, g pairs: 

~[f(r, w)/(r, w')+g(r, w)g(r, w' )]dv=o.,.,•, 

~[g(r, w)f (r, w') -g(r, w')j(r, w)]dv=O, 

2:, [icr', w)f (r, w)+g(r', w)g(r, w)]=o(r-r' ) , ., 

2:, [j(r', w)g (r, w)-g(r', w)f(r, w)]=O. 
"' 

( 5) 

In terms of the solutions of eqtn (2), obtained self-consistently according to (3) and (4), the 
energy of the system is 

I fl2 
-2 ~ Jg(r, w) 2m {7 2g(r, w)dv 

+_!_ 2:, I g(r, w) V(r, r' )g (r', w)dvdv' + 2:, I g(r, w)( V1(r)- p.)g (r, w)dv 
2 "' J "' J 

--2:, [f(r, w)U(r, r ')g (r', w)+comp. conj.]dvdv' 1 ~ -
2 ., 

(6) 

in the ground-state, i.e., in the vacuum of the <!>-operators. 
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The problem we shall consider concerns solutions of (2) when there is a single charged im­
purity whose potential, together with the screening effect of V(r, r'), may be replaced by a 
highly localized potential, which, for simplicity, will be taken to be a delta-function located 
at the origin. The relevant solutions of (2) are scattering solutions: linear combinations of 
incoming plane waves, and outgoing spherical waves. (In this connection it is to be noted 
that for a given eigenvalue w there are four waves that satisfy (2), with wave-vectors 
equal and opposite in pairs). To obtain an idea of the character of the change in the gap 
U as a function of position in the vicinity of the impurity, we first make a very rough, 
non-selfconsistent calculation in which we find the functions f and g, neglecting the change 
in U, and use them to find the change in U. (This could then be used to recalculate f and 
g, and so on.) Replacing, then, the gap operator U(r, r') by a constant, the scattering 
solutions of (2) are, with h2/2m=1, 

I' _ tk·r+ .._, tk'·r[(p.-k'2-Wk)/k(O)- Ugk(O)] V ~ } 
J k-Uk8 ..::..., 8 k ) U . I n , 

k' (p.- '2 2+ 2_wk2+zol >4 

_ tk·r+ .._, tk' ·r[(p.-k'2+wk)gk(O)+ Ufk(O)]v ~ 
gk-Vke ..::..... e ( k'2)2+ U2 2+ ., I n , k' p.- -wk Zu2 >4 

(7) 

where D is the total volume, and Do the volume occupied by the impurity. We have not 
troubled to write out in full the values of f and g at the origin; these values can be found 
by setting r equal to zero and solving. The incoming wave-pair ukeik·r, vkeik·r forms the 
Bogoliubov quasi-particle, with energy wk=Vck2+U2 where ck=k2-p.. Provided the change 
in U due to the impurity is not too large, the scattered waves in (7) may be simplified as 
follows: The terms under the summation signs have two pairs of poles 

k'=±Vp.+vwk2-U2 ; k'=±Vp.-vwk2-U2 . (8) 

The residue at one of these is of order hwn/U larger than the residue at the other, where 
hwn is the Debye energy. Hence if hwn~ U, the contribution from the other pole may be 
neglected. Then (7) takes the simple form 

fk=-1 -[uketk·r+Vo~2:eik'·r /k(O). ], } 
Dl/2 D lckl-ck'+zo1 

gk=-1-[vketk·r-Vo~2:e'k'·r gk(O). ] 
Dl/2 D ickl +Ck' +zo2 • 

(9) 

where terms in U have been discarded. The infinitesimal numbers 
such that the scattered waves are outgoing. 

o1o o2 must have signs 

In this approximation 

/k(O)=uk/D 1t2( 1- Do Vo .2: 1 . ) ~ } 
D lckl-ck'+zol 

(0)- /D1; 2 ( 1 Do Vo .._, 1 ) 
gk -Vk + D ..::..... lckl +ck' +io2 ' 

(10) 

which shows that if the impurity gives rise to a virtual bound state near the Fermi surface, 
which is the only region of interest in the construction of U, the change in U can become 
very large. Evaluating (9) for free particles, and neglecting the possibility of a resonance 
by replacing /k(O), gk(O) by uk, Vk respectively, we find 

where 

/. =-k- e'k·r+C-- . U 
[ 

eiF<k>r] 
k Dl/2 r , 

_...!!Jf._[ tk·r eiG<klr] 
gk- Dl/2 e + C r , 

F(k)=k k>kt, G(k)=v2kl-k2 k>kt, 

=v2k1
2-k2 k<kt, =k k<kt, 

C= (4rr)-1 VoDo 
h2/2m ' 

(11) 

(12) 
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u and v are found in the usual way. Without the impurity the equations for f and g be­
come (disregarding V) 

skuk- Ukvk=wuk , 

-skvk- Ukuk=wvk, 
(13) 

where Vk= ~ v(r)e'k·rav and where we have assumed for simplicity that v depends on r-r' 

only. Finally, we neglect the dependence of Vk on its subscript altogether and, in the usual 
way, restrict the summation over k' to a narrow range, of order of the Debye energy, 
around the Fermi surface, in which range v is attractive, equal to -w, say. Then u and v 
are given by 

(14) 

and the self-consistent equation for U is 1=V.L: lj"Vsk2+U2. (Uis now independent of k). 
We are now in a position to write down the change in U due to the scattering. To ob­

tain simple results, we sometimes will assume that v is very short range, so that the non­
local character of U can be disregarded. This is a rather serious deficiency, since the 
range of the attractive part of v is not necessarily very short. It would be safer to say 
that we are looking at the diagonal elements of U in a position representation, but that in 
an actual calculation of the ground state energy the off-diagonal elements must be con­
sidered as well. From (11) and (12) we find, then, that the fractional change in the diagonal 
elements of U consists of two distinct parts: the part due to interference of the incident 
part of f with the scattered part of g, and a part due to the interference of the scattered 
parts of f and g. The portion due to the interference of incoming and reflected parts is 
proportional to the scattering potential, but varies very rapidly with position. The portion 
due to interference of the scattered f and g waves varies rather slowly with position, and 
is quadratic in the impurity potential. Making use of the fact that the summations are 
confined to a small neighborhood of the Fermi surface, the change in the diagonal element 
of the gap operator may be written: 

ilU(r, r) 
u 

c zD ukvkkdk ]sin 2ktr+o( 7) 
r 

)ukvkk2dk 

c2 ~ukvk cos {[v2ki-k2-k]r}k2dk 
+--~------~------------

r2 ) UkVkk2dk 
(15) 

For the evaluation of the energy, we need the general off-diagonal element. The change 
in this element due to the impurity is 

11U(r, r') 
u 

+comp. conj. with r and r' reversed 

+ ;;
2 

2:: ukvk[e-IFikir'HGikir +comp. conj. with r, r' reversed] . (16) 

Quite obviously, because of the presence of rapidly oscillating terms, the contribution to 
the energy from the change in U is second order in the scattering potential, even though 
the change in U contains a term of first order in V. Formulae (15) and (16) apply to the 
case of resonant scattering also, if the term linear in V is multiplied by 
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and the term quadratic in V by 

{ 
1 }-'{ 1 }-1 1--:o.L: 1+-:o.L: . 

In that case the sums in the denominators must be evaluated paying heed to the band 
structure; for a free electron gas they would diverge. 

3. 'Pinning' of superconducting regions in a non-superconducting matrix 

So far we have found the first approximation to the change in the energy gap operator 
U due to an impurity. We now turn to the more speculative question if it is possible for 
an impurity to trap a superconducting region around it, even if the sample as a whole has 
become normal for one reason or other, such as an applied magnetic field in excess of the 
critical field. 

There are now two obvious types of solution: In one of these there is no incident /-wave, 
and the incident g-wave is vkeik·r, where vk= 1 k <kh vk= O elsewhere*. The energy gap is 
zero everywhere, except in the immediate vicinity of the impurity, where we denote it by 
L1 U. To solve the scattering problem without the need for considering extremely complicated 
non-linear integral equations, we are forced to make an extremely drastic assumption, namely 
that LIU has a-function character. Accordingly we write 

LIU= ~ow ~ {fk(O)gk(O)+comp. conj.} (17) 

= iloLIU,, say. 

The scattering solutions, in the two cases, are 

} (18) 

in terms of the values off and g at the origin. Setting r equal to zero and solving for 
these values, we find, in one of the two cases 

gk(0)=(1+ VBk)/ [1 + V(Ah+Bk)+( P + LIU,2)AkBk] 

/ k(O) = L1 U,Bk/ [1 + V(A k + Bk) + ( V 2 + L1 U,2)AkBk] 

A k= 2: 1 . f2o 
Ck'-ck+zo, 7F 

Bk= 2: 1 . ~ 
€k•+ ck+zo2 Q 

(19) 

whence we derive, with the help of (17), the self-consistency condition for the energy gap: 

1=w 2: Re{Bk(1+ VBk)} 
k<k:t \1 + V(A k+Bk) + (V 2+LIU1

2)A kBk\ 2 

If for some value of V the simpler equation 

1= w 2: Re {B k(1 + VBk)} Re {Ak(1 + VAk)} 
k<k:t \1+ VAk\2\1+ VBk\ 2 wk~:t \1+ VAk\ 2\1+ VBk\ 2 ' 

(21) 

can hold, then for a certain V, equation (20) will be satisfied with a slightly different value 
of V, (or for a slightly different density of states curve). It is sufficient therefore to con­
sider (21). Quite clearly, the positions of the resonances, as well as the strength of the re­
sonances (i.e. , the smallness of the density of states at the resonances) will be the decisive 
factor. Of course V, the total self-consistent impurity potential, is not arbitrary, but might 
be derived, in simple cases from the Friedel sum-rule. 
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The fact that the resonance factors can 
have either sign forces us to indulge in one 
final speculation: Can impurities bring about 
superconductivity, when the resonances are 
strong, but when the electron-electron inter­
action is always repulsive? The answer is 
most probably no. The region of momentum 
space that is most critical is presumably that 
near the Fermi-surface. But close to the 
Fermi surface, the poles of the integrands of 
A k, Bk, which are also the points at which 
these quantities change sign, are very close 
together. Therefore only an extremely rapid 
variation in the density of states near the 
Fermi surface could allow the two factors to 
have unequal signs. 

4. Multiple scattering 

The question remains if, granted some 
'pinning' of the superconductivity at impuri­
ty sites, the medium as a whole shows the 
characteristic properties of superconductors. 
Within the so called 'multiple scattering ap­
proximation' this seems to be the case. It 
is necessary only to replace the potential V 
by the forward scattering matrix element 
Tkk of a suitably defined scattering matrix, 
and similarly to replace U by the forward 
element of another matrix S. Of course, at 

the end of the previous chapter we took L1 U 
to have a-function character, and that makes 
it difficult to see how a continuous supercon­
ducting medium is established. It must be 
remembered, however, that the next approxi­
mation to L1U will involve the product of f 
and g at positions other than the origin, giv­
ing a spread in the energy gap. (In fact, 
because of the finite range of the f and g 
functions, it is not certain that the a-function 
approximation is really a good starting ap­
proximation). 
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26. 

DISCUSSION 

P. G. de GENNES: There is, I believe, one complication in this one impurity problem: 
If you solve the self-consistent equation for the gap operator .1, at least in the vicinity 
of the transition point of the pure matrix, you find that this gap is of the form 

L1(r)=L1o(l+; e-hr/~o), 

where ~0 is the coherence length, and J.-v(T- Ta)!Ta. So the perturbation of L1 
extends very far (at least to distances of order ~o) and the resulting 'long range po­
tential' may alter noticeably the quasi-particle scattering. 

H. SuHL: You are quite right; to assume a a-function for the energy gap operator 
is incorrect, because the f and g functions derived from a a-function potential spread 
out and fall off rather slowly. To be consistent,' one· should calculate the energy gap 
operator, and then re-determine f and g. 




