many enlightening discussions concerning the crystal structure of ordered Au₃Mn, and to H. N. Treaftis for his able assistance in some of these measurements.

References

- E. Raub: U. Zwicker and H. Baur, Z. Metallkunde 44 (1953) 312.
- 2 A. J. P. Meyer: Compt. rend. **244** (1957) 2028.
- 3 J. S. Kouvel: J. Appl. Phys. 31 (1960) 142S.
- 4 A. J. P. Meyer and P. Taglang: J. Phys. Radium 17 (1956) 457.

- 5 L. Néel: Compt. rend. 242 (1956) 1549.
- 6 D. Watanabe: J. Phys. Soc. Japan **15** (1960) 1030.
- 7 A. Giansoldati, J. O. Linde and G. Borelius:J. Phys. Chem. Solids 11 (1959) 46.
- 8 I. S. Jacobs: J. Appl. Phys. 32 (1961) 61S.
- 9 C. J. Gorter: Revs. Modern Phys. 25 (1953) 277, 332.
- 10 L. Néel: Ann. phys. 5 (1936) 232.
- 11 K. Yosida: Prog. Theoret. Phys. (Kyoto) 6 (1951) 691.
- 12 F. Keffer: Phys. Rev. 87 (1952) 608.

JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN VOL. 17, SUPPLEMENT B-I, 1962 PROCEEDINGS OF INTERNATIONAL CONFERENCE ON MAGNETISM AND CRYSTALLOGRAPHY, 1961, VOL. I

Magnetic Properties of Au₃Mn Alloys

Kiyoo Sato, Tokutaro Hirone, Hiroshi Watanabe Seljiro Maeda and Kengo Adachi

The Research Institute for Iron, Steel and Other Metals Tohoku University, Sendai, Japan

The magnetic properties of Au₃Mn alloy, which was known to be antiferromagnetic were investigated. In the ordered state with an antiphase domain structure, the Néel temperature was found to be 140°K, the paramagnetic Curie temperature about 200°K and effective Bohr magneton $4.06 \mu_B$. Also the magnetic properties for the filed sample of the ordered alloy and the quenched alloy were investigated. The magnetization of ordered alloy was measured in static magnetic fields up to 80 KOe at 293°, 201° and 83°K. The observed magnetic behaviors were discussed based on a theory for the antiferromagnetic crystal with non-equivalent sublattices.

1. Introduction

It was known by many workers^{1,2,3)} that the ordered Au₃Mn alloy was an antiferromagnetic with the Néel temperature at 145°K. The behavior of magnetization at strong magnetic field was predicted by Meyer⁴⁾. On the other hand, an antiphase domain structure in the ordered Au₃Mn was recently studied in detail by Watanabe⁵⁾. In this paper the antiferromagnetic properties of Au₃Mn alloy in the ordered and disordered states, and the magnetizations in strong magnetic fields of this alloy are studied, and the origin of the magnetic properties is discussed in connection with the special atomic arrangement in this alloy.

2. Experimental results

Au₃Mn with a stoichiometric composition was prepared by the usual ceramic method. Specimens were subjected to following heat treatment: Specimen No. 1 was annealed below the order-disorder transformation point for twelve days. Specimen No. 2 was filed after this heat treatment. Specimen No. 3 was quenched into ice water from 700°C.

According to the X-ray analysis of the powdered specimen, Specimen No. 1 was confirmed to have an ordered structure with two-dimensional antiphase domain. The results of analysis are shown in Table I. Lattice parameters corresponding to the original Magnetic Properties of Au₃Mn Alloys

Table I. Observed and calculated lattice spacings and intensities.					$HKL \ (hkl)*$	deal d*cal	Ical	doos	Iobs
HKL	dcal	Ing	dope	Inte	451	1.585	6.4)	1.57	
(<i>hkl</i>)*	d*cal	2040	~~~~~	2008	530	1.562	1.7	1.57	VW
110	7.283	11		Served	332	1.546	2.6)	n=0 be	AL- 5
130	4.496	27		bereimo	540	1.515	3.3	1.53	vvw
210	3.960	40		fermina	501	1.512	3.3)	election d	orty ve
011	3.892	1		e awoda	511	1.505	3.1)	2 20 500	ben No.
140	3.621	38	3.67	vvw	381	1.504	6.5	1.50	vw
101	3.599	38	3.59	vw	342	1.499	6.5)	structure	borstric
111	3.513	53		Weiss In	172	1.488	0.6	Int bit	shiro 30
230	3.253	5		Roor War	550	1.457	1.3	mots sa	assau
031	3.217	23		totic Co	531	1.456	0.4	F and	autice z
150	3.005	10		i bostelta a	- 1,11,0	1.446	1.3	1-8-5	nid daise
131	2.993	3	2.84	vvw	352	1.444	2.5	. craban	od nism
310	2.682	2	2.67	vvw	480	1.436	111.4)	nd neigh	uno seco
250	2.533	2		Veine-of	402	1.430	110.6	1.43	S
051	2.516	13	2.50	vvw	082	1.423	109.9)		
330	2.428	6	2.46	vvw	(220)*	1.436*			
151	2.405	3	2.41	w	(202)*	1.430*		and the second	
241	2.334	1000	2.33	vs	(022)*	1.423*	PQ-0	0.444	211-14
(111)*	2.334*	K, 2019K		0.00008	272	1.419	5)	10 01	19-14-14-1
340	2.256	11)		direction in	0,11,1	1.380	2.3	1.39	vvw
301	2.251	6	2.27	w	551	1.369	0.4)	10-mm	1
311	2.230	25)		1. Star 1. See	013	1.332	0.1)	1.24	
170	2.221	1	2.18	w	1,12,0	1.329	2.5	1.34	VW
350	2.081	3)		12011031	372	1.323	1.4)	9-1-21	2
331	2.077	2	2.09	w	103	1.319	2.5	1.32	vvw
400	2.040	160)		lou usis	113	1.315	1.8)		
080	2.020	156	2 02	1975-01 (2004) 1976 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 -	033	1.297	2)	1 20	
002	2.005	153)	2.02	W	3,11,0	1.292	2.6	1.29	vvw
(200)*	2.040*	Instruction		horni) a	133	1.281	3.1		
(020)*	2.020*	DUDINICUS T DU		Transpire .	292	. 1.271	4)	1 26	TATAT
(002)*	2.005*			and concerns.	512	1.262	0.5	1.20	~~~~
071	2.001	1			650	1.254	. 0.4		
171	1.943	6)	1 01		053	1.235	2)	1 23	WWW.
112	1.933	1	1.51	V V VV	532	1.232	1.9	1.20	
132	1.851	5]	1.86	3737337	641	1.227	174.4)	24. 11	
351	1.847	1	1.00	V V VV	2,12,1	1.218	177.0	1.22	VS.
411	1.807	2)	1 80		243	1.212	176.9)		1
212	1.788	2	1.00	V V W	(311)*	1.227*		and the second	
181	1.762	11	1 76	******	(131)*	1.218*		8 1 3	1.45
370	1.760	0.4	1.70	vvw	(113)*	1.212*	ALCONTRACT,	A	1.9
142	1.754	13		1. 8	581	1.210	4.7)	1231	Page -
431	1.723	8]	1 70	1717117	542	1.208	4.7	1.21	vvw
232	1.707	1.5	1.70	v v w	3,12,0	1.206	2.3)	1	
152	1.668	3.5)			303	1.200	2.3)	1 19	VW
290	1.644	3.6	1.65	vvw	313	1.196	1.9	1.10	
510	1.624	0.3)		3.0-	0,13,1	1.187	2	1.18	vvw
371	1.612	3.4			552	1.179	2]	1.17	ms
191	1.608	3.4			333	1.171	0.3		1110
312	1.606	0.2		Fig. 3.	710	1.163	0.2	Inguelic a	TIS. 2. 1

161

face centered orthorhombic cell are obtained as, a=4.08 Å, b=4.04 Å and c=4.01 Å. The intensities and the lattice spacings are calculated based on the superstructure with A=2a, B=4b and C=c, shown in Fig. 1. Our results coincided with the structure observed by the electron diffraction⁵⁾. For the Specimen No. 2 no superlattice reflection line was observed. Specimen No. 3 showed a partial ordered structure. In the crystal structure of ordered Au₃Mn shown in Fig. 1, the manganese atoms have two kinds of sublattice A, F and B, E, and a pair of nearest neighbor A-F-S located at the antiphase domain boundary. So, if we take the first and the second neighboring manganese atoms in an xy-plane, four atoms make a chain with

Fig. 1. Crystal structure of Au₃Mn.

Fig. 2. Magnetic susceptibilities of Au₃Mn alloys.

a finite length, shown by E-F-A-B as well as C-D-G-H.

The temperature dependence of magnetic susceptibilities for these specimens was observed: results are shown in Fig. 2. Both ordered and filed alloys show a typical antiferromagnetic behavior, while quenched alloy shows somewhat different behavior. In the ordered alloy, Néel temperature T_N was found to be 140°K. Based on the Curie-Weiss law, the effective magneton number μ_{eff} was estimated as 4.06 μ_B , and the asymptotic Curie temperature θ_p is 200°K. These results agree with those obtained by Mayer. In the filed alloy, T_N was found to be 42°K, θ_p about 70°K, and μ_{eff} 5.24 μ_B . The positive value of θ_p can be considered to support the existence of a strong ferromagnetic coupling between manganese atoms.

Further, the magnetization of the ordered alloy was measured in static fields up to 80,000 Oe at 293°K, 201°K and 83°K. Measurements were made by means of strain gauge type magnetometer, results being shown in Fig. 3. As can be seen in this figure, at a field strength of about 40,000 Oe the magnetization curve has an inflection point. This field is considered to be the critical field of spin flopping in this alloy. Above 80,000 Oe the magnetization seems to saturate. However, the magnetization at 80,000 Oe is about one half of the value of the completely aligned moment estimated from the data of susceptibility above $T_{A'}$.

Fig. 3. Magnetization curves in ordered Au₃Mn.

Fig. 4. Calculated magnetization curves with $\xi = \beta/\alpha$. $(M_A = M_B, \gamma = 0)$ $h_E = 1 - \xi + \sqrt{1 + \xi^2}$ for $\beta > 0$; $h_E = 1 + |\xi| + \sqrt{1 + \xi^2}$ for $\beta < 0$.

3. Explanation of experimental results

In order to explain our experimental results illustrated above, we consider the exchange interactions of the first and the second neighbors of the intrachain E-F-A-B and one of the third neighbor of the interchain. For the Au₃Mn structure, the usual twosublattice antiferromagnetic model⁶⁾ is not applicable. According to the empirical stand point for other manganese alloys and also according to an estimation* based on the theory of s-d exchange interactions⁷⁾, the following neighboring interactions can reasonably be assumed: the nearest neighbor interaction is antiferromagnetic (exchange field coefficient is denoted by $-\alpha$), and the second neighbor interactions along y- and zdirections are ferromagnetic (denoted by β and β_0 respectively). β_0 is regarded to be stronger than β , because β_0 is responsible to give the high Néel temperature in this substance. γ is the third neighbor interaction for the interchain spin arrangement, which is considered to be not so strong. Thus the stable arrangement of spins in the chain E-F-A-B is shown as ++--. Based on the

* If the $3d^6 4s^1$ electron configuration of Mn atom in Au₃Mn alloy is assumed and the free electron approximation is applied and the cubic lattice parameter 4.03 Å and $k_f=1.21$ Å⁻¹ are used in Yosida's expression, the ratio of interactions for the first, the second and the third neighbors is obtained as -4:2:-1. molecular field approximation, Néel temperature and susceptibility above T_N are expressed by the equations (1) and (2), respectively.

$$T_{X} = C[2\beta_{0} + (\alpha/2) \pm 2\gamma + \sqrt{\{(\alpha/2) \pm 2\gamma\}^{2} + (\beta \pm 2\gamma)^{2}\}} \text{ for } \gamma \ge 0, (1)$$

$$\frac{1}{\gamma} = \frac{T - \theta_{p}}{C} - \frac{\tau}{T - T_{1}}, \qquad (2)$$

where $\theta_p = C\{2\beta_0 - (\alpha/2) + \beta + 8\gamma\}$,

$$T_{h} = C\{2\beta_{0} - (\alpha/2) - \beta - 4\gamma\},$$

$$\tau = C\{(\alpha/2) + 2\gamma\}^2$$
 and $C = (N\mu_B^2/3k)g^2S(S+1)$.

In this expression T_X is found to be at a temperature higher than θ_p , this fact being contrary to the experimental evidence. The molecular field approximation is not so good in this case, because the atoms have only a few neighboring pairs. Therefore, it can not be expected to determine the correct value of interaction constants from the observed magnetic data such as $\chi(T_X)$, T_X and θ_p .

Next, if a magnetic field is applied to this substance, the free energy of this system is expressed by following equation (3):

$$E(\theta, \varphi) = -M_A^2 \alpha \cos 2\theta - 2M_A M_B \{ (\beta + 4\gamma) \cos (\theta - \psi) + 2\gamma \cos (\theta + \psi) \} -H(M_A \sin \theta + M_B \sin \varphi) .$$
(3)

In a given field, each spin on the A-site and B-site makes a different angle θ and φ from the antiparallel spin axis. Minimizing the free energy for θ and φ , and introducing an

(5)

uniaxial magnetic anisotropy energy K, the following expressions of the saturation field H_E and the critical field H_c are obtained as,

$$H_{\mathbb{B}} = \{\alpha - (\beta + 2\gamma) + \sqrt{\alpha^2 + (\beta + 6\gamma)^2}\}M, \quad (4)$$

$$\chi_{\perp}(0) = (\alpha + 2\beta + 8\gamma)/2(\alpha\beta + 6\alpha\gamma + 4\beta\gamma + 16\gamma^2) .$$

 $H_c = \sqrt{2K/(\chi_\perp - \chi_\parallel)}$

Then the calculated magnetization curves are shown in Fig. 4 with the parameter β/α .

It can be expected from our theoretical consideration that the magnetization curves have a non-linear dependence on the magnetic field due to the different exchange interaction for the different crystallographic sites. The anisotropy energy introduced above can be estimated from our data as about $K\simeq 0.16 \times 10^6$ erg/gram at 83°K for $H_c=40,000$ Oe.

In order to obtain the knowledge for interactions between manganese atoms, it is neccessary to observe the magnetization in a still stronger magnetic field, and also it is desirable to know the detailed spin structure determined by neutron diffraction study.

The present authors wish to express their sincere thanks to Professors S. Ogawa and D. Watanabe for their valuable discussions for the present investigation.

References

- E. Raub, V. Zwicker and H. Bauer: Z. Metallkde. 44 (1953) 312.
- 2 A. Kussmann and E. Raub: Z. Metallkde. 47 (1956) 9.
- 3 A. Giansoleati, J. O. Linde and G. Borelius: J. Phys. Chem. Solids 11 (1957) 46.
- 4 A. J. P. Meyer: Compt. rend. 244 (1957) 2028.
- 5 D. Watanabe: J. Phys. Soc. Japan **13** (1958) 535.
- 6 T. Nagamiya, K. Yosida and R. Kubo: Advances in Physics 4 (1955) 1.
- 7 K. Yosida: Phys. Rev. 106 (1957) 893.

According to the empirical stand

DISCUSSION

C. D. GRAHAM, JR.: It is remarkable to find that rather different results have led to quite similar conclusions, at least for the ordered Au₃Mn. The great differences between the quenched and filed alloys clearly merit further investigation.