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Antiferromagnetism in Spinel• Like Compounds* 
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National Chemical Laboratory, Poona, India 

A theoretical study on antiferromagnetism in certain "normal" spinels (cubic or 
tetragonally distorted), where the A cations are diamagnetic and B paramagnetic, has 
been made using the molecular field approximation. It is found that the most stable 
arrangement is one in which each < 110 > and < 1l0 > row is antiferromagnetically 
ordered with the spin vectors pointing along these directions. 

This arrangement predicts temperature independent magnetic susceptibility below the 
transition temperature for all fields. Reference is made to experimental confirmation 
of this in certain spinels. 

Introduction 
In this paper we discuss the antiferromag· 

netism of certain spinels (cubic or tetrago· 
nally distorted) where the A (tetrahedral) 
sites are occupied by diamagnetic cations 
and the B (octahedral) sites are occupied by 
paramagnetic cations such as Fea+, Mna+ and 
Cra+. These are "normal" spinels, examples 
are ZnFe20,, CdFe20,, ZnMn20 ,, CdMn20, 
etc. The two manganites are tetragonally 
distorted1>. 

Owing to the occupation of the A sites by 
diamagnetic ions, we have to consider the 
spin ordering only in terms of B·B interac· 
tions. Antiferromagnetism of zinc ferrite 
has been discussed by Tachiki and Yosida2> 
by assuming a magnetic superstructure of 
tetragonal symmetry with + and - spins al· 
ternating in (001) planes. Although this 
calculation is a step in the right direction, 
certain other spin super-structures in the 
presence of tetragonal distortion (e.g. in 
ZnMn20,) may turn out to be more stable. 
In what follows, we explain these possibili· 
ties on the basis of molecular field approxima · 
tiona.t>. 

Molecular Field Formulation 

Following Yaffet and Kittel•>, we subdivide 
the B lattice into four sub-lattices namely 
Bt. B2, Ba and B,. If we consider one cation 
from each sub-lattice, they form a tetrahedral 
unit in the case of cubic spinels and tetra· 
gonal sphenoids for tetragonally distorted 
spinels. In the latter case the mutual dis· 
tances are as follows: R12= Ra,=t= R1s=R2, = 

* Read by S. Koide. 
NCL communication No. 454. 

R2s=Ru. 
We denote the molecular field coupling 

constants for the interaction between the 
sub-lattice i and j by the symbol b,;. These 
are assumed to be negative. The molecular 
field acting on the i th lattice is given by 

4 i=1,2,3,4 ( 1 ) H ,=L, b,;M; 
j = l j=1, 2, 3, 4. 

The four equations typified by (1) contain 
sixteen interaction constants. From sym· 
metry considerations we have only three in· 
dependent constants namely buC= b22= baa = 
b.,); b12(=b21=ba.= b.a) and bla(=bal=bu=bu= 
b2,=b,2=b2a=b32). Thus, we can write the 
four equations in the following explicit forms: 

H1 = buM1 +b12M2+b1aMs+b13M, 

H 2=b12M1 +buM2+b1aMs+b1aM• 

H 3 = b1sM1 +b1aM2+buMs+b12M, 

H,=b1sM1 +b1aM2+b12Ms+buM, 

( 2) 

The energy in the absence of an external 
magnetic field is 

E=-~L,Hc-M,. (3) 

Obviously, the magnitudes of the vectors M, 
are identical. Hence, 

E=-[2b11M 2+b12(Ml·M2+Ms·M,) 

+b13(M1 +M2)·(Ma+M,)) ( 4) 

= -M2{2b11 +b12[cos (n-2«ft)+cos(n-2¢)) 

+2b13(1-cos 2«fi)112(1-cos 2¢)1' 2cos 0} , 
(5) 

where the angles between the vectors M1 
and M2 is (n-2¢1), and between Ms and M, 
is (n-2¢). Likewise 8 is the angle between 
(M1+M2) and (Ms+M,). In order to get a 
physically meaningful result it is necessary 
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to invoke the symmetry of the unit for min
imizing the energy with respect to angles. 
Accordingly, we put 2¢=2¢ . Thus the values 
of 2</J and 8 which minimize the energy are 

(i) 2¢=0, (ii) 2</J = n:, 8= n:, 

(iii) 2</J = n:, 8=0 -

The corresponding energies are given by 

E1 = -2M2[\b12\- \bu\] ( 6 ) 

E 2= -2M2[2 \b13\-\b12\- \bu \] ( 7 ) 

E3=2M2[\b11 \ + \b12\ + \b1 a\ J . ( 8 ) 
It is to be noted that \b11 \ is , of course, 
much less than \bd or \b1s\. Hence the most 
stable state will be governed by the relative 
magnitudes of b12 and b13. In our case, we 
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have considered the case where R1s > R12 (for 
tetragonally elongated spinels). This is true 
for zinc and cadmium manganites; however, 
even for zinc ferrite a similar elongation 
may exist at low temperatures as suggested 
by Tachiki and Yosida2>. In the present case 
the strength of the indirect exchange inter
action can be taken to depend on the nearest 
neighbour distance. The role of oxygen 
orbital is different in spinel as compared to 
rock salt type lattice. For cubic spinels the 
nearest neighbour interaction will take place 
through the orbital (1!v 3 )(Pz +Pu+P.) which 
overlaps equally with the three octahedral 
magnetic ions (For details see Sinha5>) . We, 
therefore, assume that \b12 \ > \b1a\. The lowest 
energy is thus E 1 with E 2 being higher than 
this. Es has a positive value and hence is 
unstable. We now consider the various spin 
configurations associated with these spin 
super-structures. 

The first case represents an antiferromag
netic super-structure, with the net magnetic 
moment in each <HO) and <IIO) row being 
independently zero. As far as the directions 
of the spin vectors associated with each sub
lattice are concerned, there are various pos
sibilities. For a picture consistent with the 
symmetry of the unit, we choose the direc
tion of the spin vectors along (110) and <IIO) 
axes. The arrangement of the spin vectors 
is shown in Fig. 1a. 

The second case (i.e., for E 2) corresponds 
to an ordering of + and - spins in alternate 
(001) planes. This is the same super-structure 
as considered by Tachiki and Y osida. 

The third represents a purely ferromagnetic 
arrangement and, from energetic considera
tion, we have seen that it is the least likely. 
The latter two configurations are also shown 
in Fig. 1. 

The transition temperature associated with 
these super-structures are determined im
mediately from the energy values. The one 
pertaining to the most stable state (i.e. E1) is 

Tel S(~; 1) g 2,82[\b12\-\bu\] (9) 

Similar expressions can be obtained for Te2 
and Tea· 

Derivation of Susceptibility 

In deriving the susceptibility below the 
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Neel temperature*, we follow the same pro
cedure as adopted by Van Vleck6

> and 
Anderson7 >. The main difference, however, 
arises because of the presence of two nega
tive exchange constants ], z and ],a in our 
model. The effective field on the sublattice 
one is 

H,•ff= H 0 -a1zSz-a18(S a+ S, ), (10) 

where a,z= 21f,zlz/g and a,a= 21f,alz/g with 
z=2 for the present model. We can write 
down the equivalent expressions for the other 
three sublattices easily. Let the applied field 
Ho be perpendicular to all the sublattice spin 
vectors. On the application of this field, we 
shall have S, = S,0 + oS,, where 

loS I= IS oiiHo-a12oSz-a13(oSa+oS,)I (11) 
1 1 

la1zSz0 +a,a(Sa0 + S,o) l 

Since (S 3°+ S,0)=0, this yields, assuming 
loS,!= loSzl and loSs I= loS, I, 

2a121oS, I +2a,aloSal = Ho. (12) 

Finally summing over all the sublattices 

2(a,z+ a13)[1oS, I + loSzl + loSal +loS, I] = 4Ho . (13) 

The magnetization is given M =(1/4)Ng{3oS. 
Thus we get the susceptibility as 

- Ngf3 NgZf32 
X<oot>- 2(a,z+a,a) 4z(I J121 + IJ,al) ' (14) 

which is independent of temperature. Pro
ceeding in the same fashion, we have for 
field applied in ( 110) or ( liO) direction. 

(15) 

Hence, it can be easily shown that the total 
susceptibility at X<T<Tc> = X <Tc> is independent 
of temperature below T. for powder or single 
crystals. 

Following the standard procedure7
> the 

susceptibility above the Curie temperature is 

with 

S (S+1)Ng2{32 
X<T>Tcl = 3k( T+B) (16) 

* In the following, we confine our attention only 
to the super-structure which corresponds to E, and 

Tel· 

B=2S(S + 1)z[l]121 +21],sl]/3k . (17) 

Discussion 

The foregoing analysis shows that by 
taking the inherent anisotropy of tetragonally 
distorted spinels into account, it is possible 
to pin down a specific model of antiferromag
netic spin super-structure for such systems. 
Observations made on zinc manganite by Dr. 
Sabane6

> of this Laboratory show a constant 
susceptibility below 300°K for field strength 
of the order of 4000 Oersteds. 

For zinc ferrite, the difference between 
the interaction constants b,z and b,s is ex
pected to be very small. Consequently the 
energy difference and the transition tempera
tures for the two antiferromagnetic spin 
super-structures, i.e. 1 and 2 of Fig. 1, will 
also be small. In view of the complexity of 
super-structure pattern for zinc ferrite as 
revealed by neutron diffraction9>, it may be 
presumed that the two super-structures 
coexist in an otherwise uniform chemical 
system. 

We are grateful to Dr. A. B. Biswas for 
discussions and Dr. C. D. Sabane for informing 
us about his zinc manganite results prior 
to publication. 
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