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In domain theory and in micromagnetics, an important and often difficult step is the 
evaluation of the magnetostatic energy. In many cases a rigorous calculation, even if pos
sible, is laborious and is not justified in view of the crudeness of the theoretical model. 
The method described here leads to lower and upper bounds for the magnetostatic self
energy of a given magnetization distribution M. This is accomplished by maximizing 

Wn = -(8rr)-1IH22dV- IM·H2dV and minimizing Wn=+ (Srr) - 1IB22dV- IM·B2dV with 

respect to adjustable parameters in a conveniently chosen irrotational field H2 and 

solenoidal field B2 (dV=volume element). Then Wn :-:;; Wm = -(1/2)JM·HtdV and 

Wn~ Wm 1= -(1/ 2)IM·BtdV= Wm-2rriM2dV, where H1 and Bt=Ht+4rrM are the 

actual magnetizing force and flux density due to M. By judicious choice of the forms 
of H2 and B2, one can obtain a rough estimate of Wm (or of Wm') by slight labor. 
Examples are given. 

In theoretical calculations of magnetic 
microstructure, a difficult step is the calcu
lation of the magnetostatic fields and self
energy. In rigorous nucleation-field calcula
tions 11 -2>, the potential problem must be 
solved rigorously; but in approximate calcu
lations of the magnetization distribution by 
the Ritz method, a correspondingly approxi
mate calculation of the field would be suf
ficient. And in domain theory, the Fourier 
series often used for the magnetostatic cal
culation are at times fantastically incongru
ous with the crudeness of the underlying 
model. 

The method to be described permits a cal
culation of the magnetostatic energy with as 
much or as little accuracy as may be de
sired, and always with known limits to the 
error. 

Suppose that we wish to calculate, approxi
mately, the field of a given distribution of 
magnetization M; and suppose for the present 
that we are interested in the H field. This 
is the Coulomb field intensity of the mag
netic poles or charges. An obvious method 
of approximate calculation is to replace the 
given charge distribution, with unknown 
field Ht. by one located roughly in the same 
regions, with known field H2. For example, 
we may replace a disk, whose field is hard 
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to calculate, by a sphere, for which the 
calculation is easy. But now we can im
prove our approximation by making our sub
stitute distribution depend on one or more 
parameters, and then adjusting the parame
ters for best fit in a least-squares sense. 
That is, we adjust them so as to minimize 

~(H2-H1) 2dV. In this expression, expand 

the square; note that the term containing 
H 1

2 is independent of our parameters; and 
transform the cross-product term by noting 
that, since H2 is irrotational and H 1 +4rrM is 

solenoidal, ~HdHt+4rrM)dV=O. The result 

is that we must minimize - Wu, or maximize 
Wu , where 

Wa= -(l/8rr)~H22dV- )H2·MdV. (1) 

This principle may be interpreted as fol
lows. Let H2 be a disembodied field, irrota
tional everywhere, whose self-energy is 

-(l/8rr) )H22dV and whose interaction energy 

with the magnetization is- )H2·MdV; let Wa 

be the sum of these two energies. To make 
H2 approximate best the actual field of M, 
maximize W u under whatever constraints 
are imposed by the form chosen for H •. 
When there are no constraints, the maximi-

zation makes H.=Ht and Wa=-!)Ht·MdV, 
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the self-energy W,. of the poles. Thus a 
maximization under constraints leads to a 
value of W n that in general is smaller than 
the actual value of the self-energy W,.. 

This way of formulating the principle 
enables us to avoid solving any potential 
problem, even an easy one. We do not need 
to think about the substitute charges, only 
about the field Hz. In choosing its form, 
however, we do well to remember that the 
points of divergence of Hz should be some
where near the actual poles. 

If we wish to calculate the B field rather 
than the H field, we use Amperian currents 
instead of poles. Exactly analogous reason
ing then leads to the conclusion that we 
should minimize 

Wn= + (l/8n:) ~BzzdV- ~Bz·MdV, (2) 

where Bz is a solenoidal field. Minimization 
without constraints makes Bz the actual flux 
density due to M and gives Wn its minimum 

value W,.'=-!~Bt·MdV. By this method 

we get, in general, too large a value of W,.' . 
But 

W,.- W,.' =!~ (Bt -Ht) ·MdV=2n:~MzdV, 
( 3) 

which for a given magnetization distribution 
is a known constant, and which for a homo
geneous ferromagnet is 2n:M.z V (M.=sponta
neous magnetization, V= specimen volume). 

lMs jMs 

By adding this known term to our overesti
mate of W,.', we get an overestimate of W,.. 
We now have two estimates of the internal 
magnetostatic pole energy W,., and we know 
that the correct value lies between them. 

If we use complete sets of orthonormal 
functions, we can obtain as accurate a value 
as we please by keeping enough terms. For 
many purposes, however, a very crude ap-· 
proximation will suffice. 

I will illustrate the method by applying it 
to an infinite plane slab, of thickness b, mag
netized in domains of width a, alternately in 
opposite directions normal to the faces. 
This case, of course, can be solved rigorous
ly with Fourier series3l. To solve it ap
proximately, we assume the simple H 2 and 
B2 fields shown in Fig. 1. All curves shown 
are circles, and Hand B are constants. The 
discontinuities across surfaces affect only the 
normal component of H2 in (a) and only the 
tangential component of B2 in (b); thus H2 

does no curling and Bz no diverging. Rough
ly, Hz diverges where M converges, and Bz 
curls where M curls. By maximization and 
minimization with respect to the parameters 
H and B we get, for the magnetostatic self
energy per unit volume, w,.=n:M.zu, where 

Umin=lfn:p, P=b/aC:.l; ( 4) 

Umax =2-(4/n:)p In (1 +n:/2P). ( 5) 

Comparison with the rigorous values shows 
that Umin/U2:(,0.6 and Umax/u~2.9. 
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We may now compare this state with one 
of uniform horizontal magnetization, taking 
account of wall energy of surface density r, 
and assuming that the uniform state is op
posed by extra anisotropy energy of volume 
density K. Let q=K/2rrM.2

, k=rrM8
2b/r; the 

domain wall thickness is o=r/4rrqM.2
• In 

general, the critical slab thickness be for 
domain formation is given by k= -1/(dujdp), 
with p so chosen that u-pdufdp=2q. If q= 
0.3, we get (bc)min=3.54r/rrM,2

, (bc)max= 
13.9r/rrMl; the corresponding domain widths, 
a, are 3.33r/rrM/ and 3.78r/rrM8

2 respectively, 
and o=0.833r/rrM,2 • The calculation is much 
easier than the one based on Fourier series, 
and the accuracy is at least sufficient for 
preliminary estimates. 

A more sophisticated way of treating the 
same problem is the following. To assure 
the irrotationality of H2 and the solenoidali
ty of B 2 , derive them from a scalar potential 
if> and a vector potential 7Jfk that are required 
to be continuous across all boundaries. As
sume that if> and 7Jf are each of the form 
X(x) Y(y), where X(x) is a conveniently 
chosen function, and determine Y(y) so as to 
maximize Wn or minimize WB. The re
sulting differential equation and boundary 
conditions are easily solved; the W's can 
then be expressed as simple functions of in
tegrals that involve X(x) and X'(x). The 
following choices for X(x) in the interval 
(0, a) combine simplicity with the required 
symmetry: for¢>, x(a-x); for 7Jf, x-a/2. Then 
we get in each case 

( 6) 

where ,u=(10)1
'

2 =3.162 for Umin and ,u=2(3)1
'

2 = 
3.464 for Umax· Calculations based on this 
formula enable us to state with assurance 
that u=0.5320± 5.2% at P = 1 and that u= 
0.05523 ± 4.6% at P=10; the rigorous values 
are 0.5203 and 0.05774, so that the errors are 
+2.2% and +4.3% respectively. 

If we now turn again to the problem of 
critical thickness for domain formation, we 
can simplify the algebra by replacing e-~'-P 

by e-p. in Umin and by 0 in Umax; the simpli
fied formulas still give lower and upper 
limits if p~l. We thus find that b in units 
of r/rrM. 2 is between 5.61 and 6.41, with a 
in the same units estimated as 3.33 in both 
cases. No greater precision would be signi
ficant in view of the approximations inherent 
in the model; and the formulas used in the 
numerical work were all elementary. 

In micromagneticsll ·2 1
, the method can be 

used, for example, in estimating the nuclea
tion field H., for magnetization curling in a 
long crystal of square cross section (an iron 
whisker). The magnitude of the nucleation 
field is found in general by minimizing a 
certain quantity, one term in which is the 
magnetostatic energy. Minimization under 
added constraints gives an upper bound; mini
mization after omission of an essentially 
positive term gives a lower bound. We can 
obtain a preliminary upper bound by impos
ing the constraint that there be no poles; 
we can obtain a preliminary lower bound by 
methods that involve omission of the essenti
ally positive magnetostatic energy. Both 
these devices evade the necessity for solving 
the magnetostatic potential problem even 
approximately. If the preliminary upper 
and lower bounds are not close enough to
gether, we can get closer ones by using the 
present method of approximating the mag
netostatic energy; the WB method gives an 
upper bound and the Wu a lower. 
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