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Formulation in the Field of Dynamical Theory 
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Using a new formulation, we can compare Fujiwara's and Fujimoto's theories with the 
author's theory. The initial behaviours (for thin specimens with increasing thickness) are 
different. We cannot yet know if these discrepancies are reduced for thicker specimens. 

Numerical results of the author's theory for many beams are given for some models. 

1. Propagation equation 

We start from the Schrodinger equation. 
Here we understand by "potential" a quantity 
which has the same dimension as energy, 
which is a function of space coordinates and 
whose modulus and argument are defined by 
the amplitude and the phase of the wave 
elastically scattered by an infinitely thin sheet 
of the crystaL The potential defined in this 
way should be complex if inelastic scattering 
occurs. 

The crystal is assumed to be infinite in 
transverse directions. If the incident beam 
is a plane wave, the diffracted wave can be 
developed in a Fourier series in any plane 
parallel to the entrance face. The amplitudes 
of the Fourier coefficients are functions of 
the position of the plane and given by 

IJ!(x, y )= 2::: ({Jh(x) exp (27riyD(h+e)) ( 1 ) 
h 

where y is a row-vector with 2 components 
y and z, D a 2 x 2 matrix taking into account 
the geometry of the crystal, h a column­
vector with 2 components k and l, and e the 
transverse components of the direction of the 
incident beam. 

2. Semi-reciprocal formulation 

A Fourier transformation in the yz plane 
gives the amplitudes of the components of 
the wave field 

[ Kh2 + dd
2

2
] rph(x)= 2::: Vh- h•(x)rph·(x) , ( 2 ) 

X ll ' 

where Vh is 2m/h times the coefficient of the 
development in the Fourier series of the 
"potential" in the plane at a depth x, and 
Kh is the x-component of the wave vector 
of the beam h in the vacuum. 

3. Matrical and semi-reciprocal formulation 

on the diagonal (N: the number of possible 
difffracted beams) and V(x) a potential matrix 
with N x N elements as follows, 

[ V(x)]hh' =Vh- h•(x) , 

the equation (2) can be written 

d 
dx I rp(x) > = I rp'(x) > 

d dx I rp' (x) > = [ -K2 + V(x)] I rp(x)> 

or 

[ K 2 + ::
2

] I rp(x) > = V(x) I rp(x) > ( 3 r 

4. Green matrix 

The equation (3) can be solved by use of 
a "Green matrix" G(x, x' ) satisfying 

[ K 2 + ::2 J G(x, x' )=lo(x-x') . 

Of two independent solutions, one corresponds. 
to the emerging waves 

G(x, x' )=-+K-1 exp (ilx-x'IK). 

5. Integral equation 

By use of a Green matrix, eq. (3) can be 
written as 

lrp(x)> = exp (ixK)Iao > - {exp (i lx-x' IK ) 

1 x --zK- 1 V(x' ) I rp(x')> dx' . 

6. Born development 

The integral equation shows that I rp(x) > 
can be written in the form: 

I rp(x) > = 2::: I rp lm > (x) > 
m 

If K is a diagonal matrix with N elements where 
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I IP'm'(x )> = -{exp (i lx-x' IK ) 

1 x -K- 1 V (x') I ip(m-ll(x ')> dx' 
2 

and 

I 1,0 10' (x)> = exp (ixK)Iao> 

7. Spatial frequencies appearing in the 
solution 

If we observe certain spatial frequencies 
in an n-th term of the Born development, we 
observe in the (n+ 1)-th term the frequencies 
which result from the differences (and the 
sums) between (and of) these frequencies and 
all the Kh. 

So, the number of the spatial frequencies 
involved for a given order of Born approxi­
mation increases very rapidly with the order 
and with the number of the beams. 

8. Solution 

The solution of the equation (3) as func­
tion of the initial conditions can be written 
simply with a 2N-components super-vector 
consisting in the sequence of the components 
of I 1,0(x ) > and those of d/dx I 1,0(x) > : 

[ I \0 (x)> ]=Q(x)[ l \Oo >] 
I IP'(x )> I IP'o> 

where 

Q(x)=I+ ~ : M(w)dw + ~ : M(w)r M (v)dvdw 

+ ... = [Q11Q12] 
Q21 Q22 ' 

M(x)=[_K2 ~ V (x) ~] . 
Taking into account the entering fields, 

we obtain the reflected field I bo > and the 
transmitted field I \01 > : 
I bo> = [A + B]- 1[B- A] I ao> 

I 1,01 > =2[Q11 [A + B]- 1B + iQ12K[A + B]- 1A] I ao> 
with 

A = KQu + iQ21 and B = Q22K-iKQ12K. 

9. Fujiwara's approximation 

If one assumes that the back-travelling 
field is very small, the backward reflexion 
for each term of the Born development is 
weak, and the integral equation can be 
written as 

liP( X)> =exp (ixK)[Iao > -i ~~ exp ( - ix' K ) 

1 x z-K- 1 V(x') I ip(x')> dx'], 

and the differential equation is reduced to 
the first order equation 

1x I 1,0(x)> ={ K - ; K - 1 V (x )] I 1,0(x )> . 

Furthermore, if one assumes that d/dxV(x) =O 
the solution is 

IIP(x)> = exp [ix( K-; K-1 v) ]lao> 

In the general case (d/dx V(x)=F O) , 

I ip(X)> =Q(x) I ao> 
where 

Q(x)=l+i~:[K-; K - 1 V (w)} w- ~:[ K 

-; K - 1 V(w)J~I K - ; K - 1 V(v)}vdw+ .. . 

10. Fujimoto's approximation 

We must remark that the commutator [K, 
1/2K- 1 V] is different from zero, but small 
when e= o (normal case). In this case, we 
can find again Fujimoto's approximation, 
putting 

K=kl. 

We obtain 

1\0(X) > = exp (ixk) exp ( - ;k x V) lao> . 

Nnmerical applications 

The matrical and semi-reciprocal formu­
lation has been programmed recently on IBM 
7090 computor for 31 beams, a column poten­
tial (d/dx V(x)= 0 ), an absorbing specimen and 
asymmetric structures. 

11. Comparison with Fujiwara's theory 

In the calculation, we use Fujiwara's theory 
as a first approximation for a thin crystal, so 
we can make comparisons if the thickness 
is below 6.4 .A . 

We find that the Phases of the diffracted 
beams out of the Bragg position are quite dif­
ferent between the two theories. It seems 
then that the theory of image formation is 
sensitive to the mode of approximation. 

When the thickness increases, the beam 
intensities remain the same order of magni-
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tude, but the differences increase between 
the results given by the different theories. 

But it seems hazardous to extrapolate these 
discrepancies to thick specimens, because, for 
thin specimens these discrepancies perhaps 
result from the interferences between the 
perturbations of the waves on the entrance 
face and the exit face. 

12. Two strong beams 

If a reflexion is at the Bragg position, the 
beam corresponding to this reflexion interferes 
strongly with the direct beam and one obtains 
oscillations analogous to the pendulum solu­
tion. 

The period is the same as that in Bethe's 
theory. 

But, 1) the extinction of the direct beam is 
never complete, 

2) the amplitudes of the weak beams are not 
a linear combination of the amplitudes of 
the two strong beams. These amplitudes 
show weak ripples about a mean value. As 
amplitudes of the ripples decrease, their period 
becomes short. 

13. Three strong beams 

If two reflexions are in Bragg position, we 
do not obtain a pendulum solution but a 
more complicated oscillating solution without 
complete extinction. At about 100 A, the 
amplitudes seem to be stabilized as pointed 
out by Fengler. 

14. Increase of the accelerating voltage 

If we increase the accelerating voltage, the 
intensities do not tend uniformly to the 

kinematical intensities. 

15. Tilt of the crystal 

By tilting the crystal, we can obtain the 
condition of maximum for the forbidden re­
flexions. The forbidden reflexions are maxi­
mum at their Bragg position. In this posi­
tion, the non forbidden reflexions from which 
the forbidden ones are caused are not 
maximum. 

All the amplitudes and phases vary slowly 
with the tilting, even for the beams for 
which the excitation error remains the same. 

16. Effect of the limitation of the number 
of beams 

The suppression of the beams for which 
the structure factor is zero has no important 
effect on the values calculated for the ampli­
tudes and phases of the strong and medium 
reflexions. 

The calculation must be made with the 
pairs of beams having symmetric indices about 
000, when their structure factors are not 
zero even if a beam is very weak. If this 
condition is not fulfilled, the results will be 
strongly non conservative for the current. 
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DISCUSSION 

L. STURKEY: As Dr. Tournarie has calculated, the intensity of a forbidden reflexion 
becomes maximum when the crystal is set for Bragg reflexion from the forbidden 
plane. I have made some experimental observations confirming this for Si: As the 
crystal is tilted so that the Bragg conditions for the (111) plane are satisfied, this 
reflexion is strongest. As the crystal is turned further, toward the (222) reflexion, 
this (222) reflexion becomes strongest, and with further tilting toward (333), the (333) 
becomes strongest. In this way, it was shown the forbidden reflexion (222) acts like 
a regular reflexion. 




