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A Note on the Peierls Force

Hideji Suzurr
Japan Atomi,c Energg Research Institute

Tokai,-mura, Ibaralti, Japan

A simple theory of the Peierls force in covalent crystals was developed. The calculated
Peierls forces were 460 kg/m6z in silicon and 253 kg/mm2 in germanium. If there were
an internal friction peak due to seeger's mechanism in germanium, it might be ob.
served at 1300'K for 40 kc/s. The internal friction peak observed at 380'c for 40 kc/s
by Kessler was suggested to be due to the motion of kinks dragging vacancies. The
low temperature internal friction peaks in some crystals with high Peierls force may
be due to the same origin.

1. Introduction
Since Seegerr) and his co-workers2) have

developed the theory of the Bordoni peak
relating to the Peierls force, many works on
this phenomenon appeared to obtain informa-
tions about the Peierls force. Peierls forces
derived from the measurements of the Bordoni
peaks in Alzoss), MgQat,sr and LiFl)'6) ,?) are
almost equal to that of copper or less than it.
This situation is very difficult to understand
from the known mechanical properties of
these crystals, and it may raise a doubt about
the Seeger theory of the Bordoni peak.

The most valuable test of the Seeger theory
.of the Bordoni peak may be the exact calcula-
tion of the Peierls force and comparison with
the low temperature internal friction. Now
it might be possible to calculate the Peierls
force at a reasonable degree of approxima-
tion by the help of high speed computing
machine in typical metals such as copper, and
in typical ionic crystals such as NaCl, KCl.
The calculation of the Peierls force, however,

seems to be carried out more easily in
covalent crystals because of its high value,
and very recently the present author discuss-
ed fully the Peierls force in covalent crystals.

In this note a brief account of the calcula-
tion of the Peierls force was given and the
relation between the Peierls force and the
internal friction in germanium measured by
Kesslers) was discussed.

2. The Peierls Force in Coyalent Crystals
The perturbation in the atomic configuration

around a dislocation is too large to apply any
standard approximation to the evaluation of
the electronic structure. We are, however,
concerned only with the cohesive energy, so
the simplest tight binding approximation used
by Leman and Friedele) may provide a plausi-
ble method to treat the energy change during
the motion of a dislocation in the covalent
crystal.

In Leman and Friedel's approximation the
energies of the valence electrons are shown
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Fig. 1 Variation of .E as a function of. ZelA:

the shaded area corresponds to the allowed
energy value.

by Fig. 1, where the abscissa is Zel). Here
4e is the promotion energy between ga arrd
ge atomic states, of energy E" and Ep:

as in usual treatment without destroying the
crystal symmetry of the diamond lattice.
Leman and Friedel, however, have shown that
the valence band in the diamond structure.
has a nearly pure bonding character in the
semiconductive or insulating material, where
hybridization has necessarily occurred, and,
therefore, the spatial electronic density differs.
very little from what a mere superposition of
independent covalent bonds would give. This
expression, therefore, may be applicable to
the displacement around a dislocation, where
the states of four bonds around an atom are
not the same with each other.

Let us consider the energy change during
the shear deformation along (111) atomic plane
in [110] direction as shown in Fig. 2. It is.
easily seen that the major part of the shear

Fig. 2 Shear displacement along (111) plane in
h10l direction in the diamond lattice.

displacement takes place between the same.
type atomic planes, namely, between AA, BB.
and CC, but not between AB, BC, CA. It is,
therefore, assumed that the shear takes place.

only between the same type atomic planes.
Then the change in the cohesive energy per
bond during the displacement may be given
by the Leman-Friedel model as follows.
For 2e1)

B6 I 2 : (E 
" 
I E e) - lEm * U 2(Errr * Erv)I

E1;t:Er-| , Ery:fi,,-)
Etl2:E"-Ee*2). (4)

For 2e>)
B 6 | 2 : (E 

" 
I E n) - lEu * | I z(Errr * Ew)l

En:Er-), Ey1:E,l) , Ew:Eu-)
EilZ:) . (5)

From (4) and (5)'il/e can see that the restoring
force for the displacement decreases abruptly
to the half of the previous value when the
strain energy of each bond exceeds Eg, where
Ze:f,. Meanwhile, as far as the displacement
is small, the deformation obeys Hooke's law

4e:Ep-8"
and i is the overlap integral given by

\Q 
*, ,,/,;"0, :\,/, ,^v ;E;*: - t

(1)

(2)

where Qn and <fsm' are the sp hybridized
atomic orbitals which point along a-th bond.
The band structure is quite different on either
side of the intersection point A, where 2:2e:
a) )>2e: Both the lower and upper bands
are made up of two broad subbands and a
flat subband which is at the top of each band.
Both the lower and the upper bands have 4
electronic states per atom. Both bands have
a width 4e, and the energy gap between them
is

Eo:21-4e l.J'

b) )12e: The flat subband previously at the
top of the lower band, is now at the bottom
of the upper band. The lower band is made
up of two broad subband, thus contains two
electrons per atom. The lower and the upper
bands have both a width equal to 2i, and the
energy gap has the value 4e-2).

This expression for the energy was obtained
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and we have

,:tr(*+)'(sty)
: o)zru'(+)' ,
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(6)

'where U is the strain energy of each bond, p
the shear modulus in (111) plane, u the
translational displacement of the atomic plane
relative to the neighbouring same type atomic
plane, h the distance between the neighbouring
:same type atomic planes, a the number of
bonds crossing the slip plane, D the magnitude
,of the Burgers vector of a perfect dislocation.
This relation should hold in the region 2e(2,
where the strain energy of each bond is less
than .Er. The potential energy in the region
where 2e)) cart not be evaluated, but it may
,be approximated by a smooth curve provided
that the tangent at the point Zeld:] is a half
,of that at the point 2e-d:1, where d is an
infinitesimal positive quantity. The potential

'energy for the displacement is then represented
by the curve in Fig. 3(b).

The displacement u.o corresponding to the

Table I. Range of elastic deformation

u"lb

0. 51

0.330

0.290

Displocemenl
(b)

Fig. 3 Schematic representation of the potential
energy.for the shear displacement: (a) diamond,
(b) silicon and germanium.

point 2e:i, is shown in Table I. Since z" in
diamond exceeds D/2, the potential energy
may be denoted as Fig. 3(a).

The Peierls force in a covalent crystal can
now be calculated by means of the procedure
used by Peierlslo) and Nabarroll). Here we
notice only the difference in force between
the potential shown in Fig. 3 and the sinusoidal
potential. Since the potentials in Fig.3 deviate
from the sinusoidal one only in the region of
high energy, the displacement around the
dislocation may be approximated by the solu-
tion for the sinusoidal potential. The displace-
ment of the upper atomic plane, just above
the slip plane, relatively to the neighbouring
atomic plane, just below the slip plane, may
be given by the relations

u- br-: L6"-,[atrr-,1@-il&7 e)
for an edge dislocation, and

Eoc.ul

E
E
o

^o

(8)

for a screw dislocation, where v is the Poisson
ratio, € the position of the dislocation.

Denoting the force acting betu'een i-th atom
in the upper atomic plane and atoms in the
lower atomic plane by f u, the relation

)f idu;:od€ , (e)
i

should hold for a small distance motion of the
dislocation, where u; is the displacement of
the ,'-th atorn, o is the force acting on the
dislocation. If the potential energy for the
displacement was sinusoidal curve, (9) should
give a nearly same result with that by Peierls
and Nabarro. The deviation from the case
of sinusoidal curve may be denoted in terms
of the atomic bond strained beyond Er. The
deviation in the force on an atom may be the
maximum when the atom in the broken bond
form a new bond with the next atom as

shown in Fig. 4 (b). The force deviated from
the sinusoidal potential energy is then a half
of the elastic force at u:u". Since the Peierls-
Nabarro force may be negligible for the
sinusoidal potential in comparison with the
force due to the deviation, the Peierls force
for the potential of Fig. 3 (b) is given by

u-f;:L tu-'lfa-omf

,,:(9#)-" i, /'f,' (10)

The above mentioned approximation may
be useful for silicon and germanium, but in

l,rut",iur I rflb I 
o$""!to"*, |,r*,u"-,

c li I s.oa li.sA
si ] r.rs 0.883 | s.ssa
Ge I o.zt 0.433 | a.oos
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(10) for silicon and germanium and by (11)
for diamond are shown in Table IL It is seen
from the table that the Peierls force for
diamond is exclusively larger than the other
materials, and it may be impossible to reach
this stress level under the usual condition. The
Peierls forces in germanium and silicon, how-
ever, are not so large and they may be
realized under some conditions. For example,
Johnston, Stokes and Li'2) have shown an un-
usually high fracture strength of about 300
kg/mm2, and obtained definite evidence of
generation and motion of dislocations by
bending germanium crystals in CP-4 solution.

Table III. Formation energy of a kink pair (eV)

Si

Energy s.T I z.so t.67

The Peierls pontential for the motion of
dislocations in a covalent crystal has some
different characters from those in Peierls-
Nabarro's approximation. The potential energy
for the motion of a dislocation increases
steeply near the top and is given approximately
by the relation

V:a(x-na)2 , (r2)
where a is a constant, r the position of the
dislocation, a the distance between the neigh-
bouring potential valley, and n:0, tl, L2,
:L3,... satisfying the relation

lx-nal<4.-2'
The activation energy required to move a

dislocation forming a kink pair is then obtained
by the usual method and we have

zwo:ol/ob\' (r-r*trrtocl), (13)

where ao is the Peierls force, T the line tension
of the dislocation and y:6160.

3. Comparison with the Internal Friction
Measurements

The discussion in the previous section showed
that the deformed germanium crystal will
have an internal friction peak with the acti-
vation energy of about 1.7 eV due to the
mechanism proposed by Seeger. The internal
friction peak due to the Seeger mechanism
should appear around 1300"K for 40 kc/s, where
germanium melts, Kesslers), however, meas-

Ge

(b)

Fig. 4. Difference between the potential in Fig.
3 and the sinusoidal potential: (a) diamond,
(b) silicon and germanium.

the case of diamond the energy gap is so
large as the potential is given only by the
'elastic deformation of each bond. The devi-
ation from the sinusoidal potential is denoted
.as Fig. 4(a). The highestresisting force against
the motion of a dislocation corresponds to the
case that the bcnd is sheared by bl2. The
force required to move the dislocation is then

If the energy gap is less than 0.1 eV, the
Peierls force cannot be calculated so simply
as above, because the number of bonds strained
beyond a" is then two or more than two.
It may be safe, however, to say that even in
,such cases the Peierls force should be higher
for the potential in Fig. 3 (b), which is dis-
,continuous in its derivative, than for the
smooth sinusoidal potential.

The Peierls force calculated by the relation

Table II. Peierls forces in covalent crystals at OoK

/ 6u\ ub

":\u€)-:r,,'fi.' (11)

c 206 0.78 | 161 | rozsi I rr.zs 
I 
,.rnl 6.?z I n.ut

Ge | 7.66 
I 
0.4861 3.72 I 2.43
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ured another internal friction peak around
380'C and also exponential increase of internal
friction above 500"C with an activation energy
of about 1 eV. The peak at 380"C decreases
by the deformation of the crystal, while the
exponential growth increases. Kessler con-
cluded that the internal friction is due to the
motion of dislocations dragging vacancies
around them. This means that dislocations
can easily move at these temperatures. Mean-
while, the discussions in the previous section
indicate that the motions of dislocations are
prohibited at these temperatures for the fre-
quencies of 40 kc/s. Meanwhile, the motion
of kinks seems to require far less activation
energy than the formation of kinks. The
internal friction observed by Kessler seems
to be due to the rearrangement of vacancies
around the dislocation by the one atomic
distance migration of dislocation through the
kink motion. The amplitude of dislocation
migration in Kessler's estinration was about
5 x 10-s cm, and this distance does not seem

to induce the rearrangement of vacancies.
The above discussions suggest that there

may be other internal friction peak due to
the motion of kinks dragging point imper-
fections than that due to Seeger's mechanism'
Interstitial atoms seem to be created during
cold work and form an atmosphere around dis'
locations. In some cases interstitial atoms
can be absorbed into dislocations but in other
cases such as extended dislocations or inter-
stitial atoms in ionic crystals may be hindered
to be absorbed into the dislocations. These
interstitial atoms may be the origin of the
internal friction as the vacancies in 380'C peak

in germanium.
Suda and Suzuki have measured recently

the creep in KCI crystals over a wide tempera'
ture range and found that the creep v/as

almost completely inhibited between 0"C and
200'C, while conspicuous creep was observed
at low temperatures. This observation sug-
gests that dislocations in KCI deformed at
room temperature are locked by the cloud

point defects. Johnston and Gilmanl8) showed
that the activation energy of the motion of a
dislocation in LiF was almost constant and
was about 0.7 eV at the temperatures between
200 and 300'K, but decreased considerably if
the measurement at liquid nitrogen tempera'
ture was included. The activation energy of
0.7 eV is almost the same as that of the
migration of lithium ion vacancy. Thus it
may be suggested in comparison with ger-
manium that the velocity of dislocations in
LiF crystal is determined by the vacancy
dragging motion. Since the migration energy
of the interstitial atoms in ionic crystals may
be smaller than the vacancies, the interstitial
dragging motion of kink may takes place at
lower temperatures.

Of course, the internal friction caused by
the above mentioned mechanism is significant
at low temperatures only in crystals with
high Peierls force. The apparent smallness
of the Peierls force in applying Seeger's theory
to the low temperature internal friction peak
might arise from the neglect of such kink
motions dragging point imperfections.
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