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The principal purpose of this work is to investigate numerically the statistical

dynamical properties of isotopically disordered harmonic crystal lattices. Two' pro'

perties are studied in detail: 1) The decay ofinitialperiodicdisturbances8*1.;*ti.h
are normal modes of the same lattice structure when all particles have the same-mass;

and 2) the dipole moment correlation function <tW(OWt(")>. The numerical calculation

of the time evolution of either 8*(") o. <\W(O)U(")> involves the solution of a single

initial value problem for a given random distribution of the isotope masses on the

lattice sites. The time evolution is investigated for values of the isotope mass ratio

mrlmz and of. p, for which the perturbation results of Maradudin, Weiss, and Jepsen

are not applicable.
A new formulation of the formal solution of the normal mode decay problem is

proposed. This formulation should make it possible to calculate the initial stages of

decay in an infinite lattice for the extreme values of mrlmz and' /c studied in this

paper.

1. Introduction sites, and for two values of the relative mass.

The principal purpose of the work reported mtfmz, we-have solved the pertinent initial

in this paper is to investigate numerically the value probleT:. *ith the aid of the IBM 7090'

effect of isotope disorder on the statistical 1,.t"^1^t:]::li:i: 
have also been made for

dynamicar properties or one-dime.,"ro.,ut n,l- t"if;::"Tl:i:::-.3::t#:1;1"i,,,","", 
recent-

monic crystal lattices. The lattice model lyzr-sr i' the calculation of the time-dependent
which is treated is a perfect periodic lattice properties of isotopically disordered harmonic
in which a fraction p of. the lattice particles crystallattices. Maradudin,Weiss,andJepsensr
have mass tfii and the remaining fraction 1iy1WJ) have investigated the same two
have mass rzz. The forces between particles problems which we consider in this paper.
are linear in their relative displacements. However they use a perturbation formalism
Two dynamical properties are studied in detail: based on techniques developed by van Hoveol
1) The decay of initial periodic disturbances and Prigogine and co-workers?) for the treat-
which are normal modes of the same lattice ment of dissipative effects in many-particle
structure when all particles have the same systems. Consequently some aspects of our
mass;and2)thedipolemomentcorfelationfunc- exact numerical calculations for a system of
tion <M(O)M(r)) which has been related to the 100 particles can be compared with the

clielectric susceptibility by Kubo.l) The first perturbation results of MWJ for an infinite
property is determined from an initial value system. In the remainder of this Section we'

problem; and the second property, the ensemble will summarize those results obtained bV MWJ

average <lw(o)l,t(r)>. is also determined from *!'-91--h1"".motivated our own work'

a single initial value problem. We have car- MWJobtainanapproximateidentitybetween

ried out numerical computations for a series <lrt(O)lW(r)> and an initial value problem

of one-dimensional lattices, each consisting of involving the optically active normal mode

100 particles with nearest-neighbor interactions (highest frequency mode) in a lattice of identi-

and periodic boundary conditions; 50 of the cal particles [relation (a)]. In addition they
particles have mass ?nr arrd. 50 have mass mz. show that in the perfect lattice normal mode

For a series of twenty different random representation, the ftth normal mode of the
distributions of the particles over the lattice perfect lattice, as an initial condition in the
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(A1)

disordered lattice, decays exponentially as

Qr,(r): exP (-1-;r) coS arptot"

[relation (b)],

respectively, where -Z is a diagonal matrix
whose ith diagonal element is the mass of the
particle at lattice site ,'. In this paper we
assume that the lattice is composed of an
equal number of particles of mass rnl and mass
mz. V' is the potential energy matrix and
exhibits the periodicity of the lattice. The
quantities r and * are column vectors whose
ith components are, respectively, the displace-
ment from equilibrium and the velocity of
particle i. The superscript " denotes the
transpose of a matrix (or vector). The clas-
sical equations of motion in this notation are

-././*:- V'x. (B1)

To solve Eq. (B 1), introduce the vector
€: -//'/'x and obtain

i:*V€ 
'

where V: -V7 -t1z V' -Z -'t,. Then define
the new vector €:-V'€, where the jrh
column of -7, fy, is the jrh tormalized eigen-
vector of the symmetric matrix 7 associated
with the frequency ro1. l-7 is an orthogonal
matrix and ) ../iu':2,97x,:1.1 The equation

jk
of motion in the new variables is diagonal in
form

b:-a,a, G2)
where the jtrr equation of motion is )'r:*aszCt. The general solution of Eq. (B2) is

0 (r):g-t sin Qrd Q)+cos Qc0 (0) (B3)

and

b1r1:ro" n, be)-a sin ar C e), (B4)

where the matrix functions sin Or and cos Oz
6 TZm4 |

u." 
Fo 

( l)^ 

- 

Q'**' urd ,Po(-l)'
r2nx 

12*1,.Q"' 
resPectivelY'

The general solution of Eq. (B1) is

x(c) : 2 -r /2 :7- Q-t stn $r d Q)
+ -Z -1/2:7'cosk0 (0) (85)

and

x (t): -V7-r/'7cos AreQ)
_ _// _,/r_Z-e sinere(O); (86)

and in terms of the initial values x(0) and
* (0) the solution is

x(t): -V7 -r/2Y-tlz sin Y1/2c -Z t/,.r (0)

+ _4r'2/ -t/2 cos v tlrr -z t/2x(0) (B7)
and

* (c): -V7 -r/2 cos V'tzr-Z tl'z* (0)

where to the lowest order in the perturbation

ra | / mLz - mzz \2 (okto)z

' o {z\ *r*, ) 1rr*"--s"'1't'
for 0<ar,'(o) (a.r-tot ' (1'2)

and on(o) is the frequency of the ftth normal
mode of the perfect lattice when all particles
have the harmonic mean mass p:2lm;,+
rnr-'f-'.

With relation (b) of MWJ in mincl, we have
studied numerically, in the perfect lattice
normal mode representation, the evolution
of the Ath normal mode of the perfect lattice
as the initial condition in a series of isotopically
clisorclered lattices. For mass ratios mtlmz of
514 and 2, we determine the decay of mode
.4:50 in a 100 particle lattice, i.e., a mocle
whose frequency lies in the middle of the
band. For the larger mass ratio mtlmz-Z,
the MWJ perturbation result cannot be ex-
pected to be valid because it [Eq. (A1)] is
,derived on the assumption that the deviation
from the average mass at a iattice site con-
stitutes a weak perturbation.

We have also stuclied the clecay of the
highest frequency perfect lattice normal mode
for a series of isotically clisordered lattices
with mrlruz-S|4. The clecay of this mode is
of particular interest for two reasons. First,
MWJ have established a connection between

it anci the clecay of <ti,ttO)tW(r)), relation (a);
and second, the expression which they give
for the damping constant must be carefully
interpreted because the denominator in Eq.
(A2) is zero.

2. Formal Solution of the Initial Yalue
Problems

In this Section we obtain formal solutions
of the initial value problems associated with
the decay of a perfect lattice normal mode
and the decay of the dipole moment correlation
function. The formal solutions are well-suited
for numerical computation.
The kinetic and potential energy quadratic

forms for a one-dimensional harmonic crystal
lattice can be written most conveniently in
matrix notation as

f,x'-Z/ * and **' O* ,
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- _z/ -1/2yt/2 sin v r/2r _,2 x(0).

(88)

Now consider the initial state of the lattice
-t(0):0 and *(0):1*tot, where f,r(o) is the frth
normal mode of the perfect lattice in which
all particles have the harmonic mean mass
.p:2(mrL+mz-t)-1 . The positions and veloci-
ties of the lattice particles at time r are

x(r): -V7 -r/2Y-t/2 sirl V1/2r_Z'/ llztktot (Bg)

and

* (r):2 -t/2 cos V1/2r_y'/ tlttkt\). (B10)

The components of r(r) and x (r) in the ,[(0)

direction are, respectively

Qr(r):tot'tr*1,7

-tkt\)r _z/ -t/2v-t/2 sirl vt/\_2. 1/2tk\0r

(B11)

and

Qr,(r):toor 11'1
_tkt,)r r'z/ *1/2 cos vrlzt u// t/ztkt\) . (B12)

Eq. (B 12) is the formal solution of the e-
quations of motion describing the decay of
the perfect lattice normal mode ,&(0). In the
,case of the perfect lattice, Eqs. (B11) and (B12)
reduce to

Q *(c) : an otot -r Sin oi(o)?

and

0r'(r)-g65 t''o't'
The oscillatory decay in the amplitude of

Qr(z) and Qr(r) obtained by Mwlsr [see Eq.
(A1)l and the oscillatory decay found in the
numerical computations described in the next
Section is caused by the irregularity in the
distribution of the masses fii.t ?td fir.2.

We now obtain an expression for the en-
semble average dipole moment correlation
function for the same chain of alternately
charged ions considered by MWJ. The dipole
moment is given by

M(r):s21-l)tn(c)
:eqrxG) (813)

where q is a column vector whose eth com-
ponent qr is (-1)t, and e is the magnitude of
the effective ionic charge. Periodic boundary
conditions are assumed. [q is proportional to
the highest frequency normal mocle vector
,x.(0) of the perfect lattice; q-Nl/ztyto) where
l/ is the number of particles in the lattice.l
Form the product M(O)M(I) using Eqs. (B13),

(85) and (86),

lfQ) Pt (r) : e'lq" x (g)llqr x k)l
: e'lZ q o -Zo-' /' -Vr * d *(o)l

x l)q.t -Zi-' /'(7- a- L sin Qc) I 1 /7 491j,t

+ s r -//j-' /'(V cos Qr) 1 1 4/1(g)l .

(814)

In a canonical ensemble the coordinates and
velocities have a simple gaussian distribution,

T1
-zlz^ exp 

L- TkrL 
a Q)' e (o)

1-r-zkr e9)raze(q l,
so the ensemble averages of (OtQ)bLQ))
afi (b*Q)er(0)) are, respectively, kTdra and
0. Using these ensemble averages the en-

semble average <tW(O)wf(i> can be written
compactly as

<tt(o)tt(,)>
: NezkTtNo)? eZ// -tl2V-r/2

xsin yt/zr_Z/ _l/2tnto) . (B1S)

Upon comparing Eqs. (B15) and (812), it is

seen that the ensemble ayerage <lt(O)lW(")>
lNe'zkT is

<tW(OWf(r)> t Nezkl:lrrotrx'n(r), (816)

where *tnr(r) is deriyed from the initial con-
dition for the lattice: .r(0):o and *(0):-y'/'-L
Xf,r'{o). Relation (a) of MWJ is an approxi-
mation in which -y'/-' is replaced by p-11 in
* (0): -,2 -t;-tot, where p-':ll2(tnr-'*mr-,).

3. Numerical Computations and Results
The method used for computing x(r) and

x (z) from initial conditions is best illustrated
by considering the series expansion of any
one of the three matrix functions of Vt/2 in
Eqs. (B7) and (B8), e.g.,

cos vl/zr:t_.,Jo* nrr,-#o,+. . . . (c1)

These series involve only integer powers of
the known matrix Y and therefore can be
computed term by term. For a value of ro
which is roughly one-eighth of the shortest
characteristic period of the perfect lattice
composed of particles with the harmonic mean
mass, the first eight or nine terms in the
expansion of cos Vtizr are sufficient to give
values of its elements correct to eight signifi-
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cant figures. In this way elements of the
propagator matrices in Eqs. (B7) and (B8) are
calculated using an IBM 7090. Once these
matrices are known, the values of x(co) and

* (ro) can be computed from the initial con-

ditions. This process, when repeated n times,
produces values ol x(nco) ar,d x(nro).

We first describe the calculation of Qn(nro)
for a series of isotopically disordered lattices
*ith *rl*r:514 and mrlmz:2. The lattices
consist of 100 particles, 50 of mass 1.0022 and 50

of mass 1.25m lor 2.00 ml u' ith periodic boundary
conditions. The mass distributions are formed
by the computing machine using a random
number generator.s) The initial perfect lat-
tice normal mode is t[|)r :(2'/' I l}X''',1,0, - 1,

0,1,0,-1,0,. . .). The associated frequency is
ro[3):(1+4/5;tt: [or a[3):G+llz)'/'z] in time

units for which the maximum frequency is
zLtr(l+415)Lt2 lor 2uz(l*Llz)tt'zl. The time in-
terval ro which is used in these calculations
ro:rl4a[8), one-eighth of the period of the

corresponding perfect lattice normal mode.

From the computed values of bro(nco) for each

random lattice, we have determined the re-
lative maxima of the oscillating decay curve

for Qro(r) by selecting the relative maxima of

dro(nro). In this way a lower limit for the

decay curve envelope is determined. In Fig.
1 these estimates of the relative maxima of

8ro(r) are plotted as a function qf r:816 for
rnlmz:|.25 for 23 isotopically disordered

lattices. The dashed curve in Fig. 1 is the
envelope of the decay curve Eq. (A1) obtained
by Maradudin, Weiss, and Jepsen.s) It is seen

in Fig. 1 that the average behavior for the
set of decay curves is not inconsistent with
Eq. (A1). During the time interval plotted,

a signal propagating with the speed of sound

travels approximately 1/10th of the length of
the lO0-particle lattice. Particularly for times
between c:8 and 20, the average curve is
systematically larger than the simple expo-

nential decay formula. This deviation of the
average decay envelope from the simple
relation exp (-l-roz), and the distribution of
individual decay curves around the average

should be interpretable within the framework
of the perturbation theory of an isotopically
disordered lattice consisting of a finite number
of particles. Because we have not calculated
the next order correction to l-so using the

MWJ procedure, we can only speculate con-

cerning the deviation of the average decay

curve from exp (-/-ror). However, we have

experimented with the random mass distri-
butions by combining a mass distribution

--*-- {. ---+- :--*--

t 2 3 4T 5 6 7 I
Fig. 1. Lower bounds of the relative maxima of the oscillations of Q5s(r) ,s r for 23 different

isotopically disordered 100-particle lattices in which the mass ratio mtlmz:514. The time r is
measured in units of rb0(0), the period of the monatomic lattice normal mode /c:50 when the
particle mass is equal to the harmonic mean of q4 and m2. In the time t:8, a signal propa-

gating at the speed of sound travels approximately U10 th of the length of the 1O0'particle

lattice.

a:*-+ g
':'n
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giving a high decay curve with one giving a

low decay curve. In such a case, when the
initial value problem for the combined 200

mass system was solved, the corresponding
decay curve was considerably closer to exp
(-1-ror) and to the average of the two original
decay curves.

In Fig. 2 analogous estimates of the relative

maxima of the decay curves of Qro1"; for 10

of the mass distributions included in Fig. 1

are plotted for the case in which mrlmz:Z.
The dashed curve, which is the plot of the
first order perturbation value of exp (-l-ror)
for the mass ratio lilrf mz:2, clearly does not
represent the average behavior for the 10

lattices. The average periods of the oscil-
lations in this case as determined form the

values of. iro(nro) deviate noticeably from the
period 8rn-2n16tot. In the calculations in the
preceding case, nhf m2:5/4, the average period
remained within one percent of htla!f;) for
time intervals two to three times as long as

that covered in Fig. 1.

Finally, in Fig. 3, analogous estimates of

the decay curves of <U(O)U(t))lNezkT are
plotted as a function of the time r for the
mass ratio 514 f.or 10 disordered lattices. The
basic interval ro for these calculations was
chosen as q:ft1412(l+415)11/'z. In addition to
computing

< tW (O) U (,)> t N e' kT - t !31', r r oor (z)

according to Eq. (816), we have computed
simultaneously the quantity p- t t lfl[r -// x \L o o) (r)

which is equal to p-'Qroo(r). Knowing these
two quantities, relation (a) of MWJ can be
tested. A comparison of the periods and the
phases of t{fl}?xttoot(r) and p-'t\l[-Z xtt00)(t)

shows that they are approximately the same. If
the masses ru 1 ar,d m2 w er eequal, then f {fl }7xtt00r (r)
would equal p-'t\l)oa -zT rttoor(r). For the 10

isotopically disordered lattices considered here,
and for rurlmz:Sl4, the relative maxima of
of t{3;zxttoorlr) are greater than or equal to

the corresponding relative maxima of p-ttlfl[r

x -/ytroot(7). The deviation of the ratio of the
corresponding maxima from the value one
varies from lattice to lattice and varies in the
course of oscillation of a particular lattice.
The variation in the ratio is necessarily less
than lmr-pllp bfi does cover the entire range
between 0 and 0.02.

During the first eight oscillations, the compu-

tations for Fig. 2 exhibit a large erratic
variation in the amplitudes of successive
maxima which is not found in the computations
for Figs. 1 and 3. The amplitudes of successive

maxima for two extreme examples are identi-
fied in Fig. 2 by dots in combination with
diagonal lines running either from left to
right or right to left.

4. Concluding Remarks

Large values of the mass ratio in the dyna-
mical problems considered here lead to strong
coupling between the unperturbed or perfect
Iattice normal modes. Consequently, a low-
order perturbation calculation of the damping
constant 1-r, would not be expected to be valid.
The expression for l-* obtained by MWJ can-
not be used to estimate the numerical value
ol l* tor the highest frequency modes, even
for values of the mass ratio close to unity.
Nevertheless, in an isotopically disordered
lattice consisting of a large number of parti-
cles, it would be expected from the law of
large numbers that the decay of a perfect

lattice normal mode Qr(r) in either of the
extreme cases considered here would be given

by the average Q(r) for all isotope configu-
rations. This expectation is based on the

structure of the expression for Q*G), which is
basically an average over the entire lattice.

Finally we wish to draw attention to a new
representation of the propagator matrices in
Eqs. (B5) and (86) which may facilitate the
calculation of the early stages of the decay

of quantities such us 8r(") for N large and
h-N. The representation is based on a
well-known form of the generating function
for Bessel functionse)

.o, 2s1 : J o(z) *22 I z"(z) cos (2n sin-1 zu)

:Jo(z)*2 l, (-l)"J2"(z)Tz"(w), (C2)
n:1

where Jz"(z) is the Bessel function of the
first kind, and Tz"(w) is the Tchebycheff
polynomial

T z n(w) : sss (2n cos- t w)'

If the time scale in the dynamical lattice
problem is adjusted so that time is measured
in units of the maximum frequency of a lat-
tice composed entirely of light atoms, then
the normal mode frequencies appearing in the
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lt\ .. \.. T

t 2 3 4?s 6 7 I
Fig. 2. Lower bounds of the relative maxima of the oscillations of qrolr; os r for 10 different

isotopically disordered lO0-particle lattices in which the mass ratio mrlmz:2. The time r is
measured in units of 150(0), the period of the monatomic lattice normal mode /c:50 when the
particle mass is equal to the harmonic mean of mr and TLz. In the time r:8, a signal propa-
gating at the speed of sound travels approximately 1/10th of the length of the IO0-particle
lattice.

Fig.3. Lower bounds of therelativemaxima of the oscillations of <lt(O)tUt(r)>lMezkTust lor l0
different isotopically disordered 100-particle lattices in which the mass ratio mrlmz:514. The
time r is measured in units of r{!}, the shortest period of the monatomic lattice normal modes
when the particle mass is equal to the harmonic mean of mr drrd mz. In the time r:8, a
signal propagating at the speed of sound travels approximately Lll4th of the length of the
100-particle lattice.
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'matrix cos rO are all necessarily less than
,one. It is then possible to replace cos "O by10)

I o(r)l * 2 2 ? l), J n(t) T z "(Q)n:L

and Q-L sin gr by a similar expression. Eq.

'(B12) for Q*(r) may then be written as

Q r(r) : t oo r 2 - t / z 
{ J n(r)L

+ 2 > (-l)'J r"(r)T z"([ 1 / 2)l 
-Z/ 

1 / 2t htlt
n=7

:Io(c)i22( r)*Jn(t)
n=l

yltpt}tr -z -'/zTr,(v 1/2) -Z ll2thto)l .

For z not too large in an infinite lattice,
,4e1"; for r(r'is expressible as a linear combi-
nation of a relatively small number of Bessel
functions. The coefficients of the Bessel

function of order 2p involves the 2ttt urr6
:smaller powers of Z-tV.
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DISCUSSION

Hori, J.: How will the situation change if the number of particles becomes larger
,and larger?

Rubin, R. J.: As the number of particles in the lattice increases, fluctuations from
the average behavior will decrease. For sufficiently small values of the mass difference
and for & not too large, the average decay curve should be the same as that given by
MWJ.


