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The principal purpose of this work is to investigate numerically the statistical
dynamical properties of isotopically disordered harmonic crystal lattices. Two pro-

perties are studied in detail: 1) The decay of initial periodic disturbances Qx() which
are normal modes of the same lattice structure when all particles have the same mass;

and 2) the dipole moment correlation function <M(0)M(-r)>. The numerical calculation

of the time evolution of either Qk(r) or <M(0)M(r)> involves the solution of a single
initial value problem for a given random distribution of the isotope masses on the
lattice sites. The time evolution is investigated for values of the isotope mass ratio
mi/ms and of k for which the perturbation results of Maradudin, Weiss, and Jepsen
are not applicable.

A new formulation of the formal solution of the normal mode decay problem is
proposed. This formulation should make it possible to calculate the initial stages of
decay in an infinite lattice for the extreme values of mi/ms and k studied in this

paper.

1. Introduction

The principal purpose of the work reported
in this paper is to investigate numerically the
effect of isotope disorder on the statistical
dynamical properties of one-dimensional har-
monic crystal lattices. The lattice model
which is treated is a perfect periodic lattice
in which a fraction p of the lattice particles
have mass mu and the remaining fraction
have mass m.. The forces between particles
are linear in their relative displacements.
Two dynamical properties are studied in detail:
1) The decay of initial periodic disturbances
which are normal modes of the same lattice
structure when all particles have the same
mass; and 2) the dipole moment correlation func-

tion (M (0)M (z)> which has been related to the
dielectric susceptibility by Kubo.? The first
property is determined from an initial value
problem; and the second property, the ensemble

average <M (0)M (7)), is also determined from
a single initial value problem. We have car-
ried out numerical computations for a series
of one-dimensional lattices, each consisting of
100 particles with nearest-neighbor interactions
and periodic boundary conditions; 50 of the
particles have mass m: and 50 have mass m..
For a series of twenty different random
distributions of the particles over the lattice
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sites, and for two values of the relative mass:
mi/me, we have solved the pertinent initial
value problems with the aid of the IBM 7090.
A few calculations have also been made for
lattices containing 200 particles.

There has been considerable interest recent-
ly?-% in the calculation of the time-dependent
properties of isotopically disordered harmonic
crystal lattices. Maradudin, Weiss, and Jepsen®
(MW]J) have investigated the same two:
problems which we consider in this paper.
However they use a perturbation formalism
based on techniques developed by van Hove®
and Prigogine and co-workers” for the treat-
ment of dissipative effects in many-particle
systems. Consequently some aspects of our
exact numerical calculations for a system of
100 particles can be compared with the
perturbation results of MW] for an infinite
system. In the remainder of this Section we:
will summarize those results obtained by MW]
which have motivated our own work.

MW ] obtain an approximate identity between

(M(0)M(z)> and an initial value problem
involving the optically active normal mode
(highest frequency mode) in a lattice of identi-
cal particles [relation (a)]. In addition they
show that in the perfect lattice normal mode
representation, the %th normal mode of the
perfect lattice, as an initial condition in the
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disordered lattice, decays exponentially as

Qk(?): exp (—I'kt) cos w0t

[relation (b)], (A1)
where to the lowest order in the perturbation
I 1 ( M2 —me? \)2 w02
k—__—
32\ mumse [0x 2 —w, @212
for 0<w " <wy©; (A2)

and ;@ is the frequency of the kth normal
mode of the perfect lattice when all particles
have the harmonic mean mass p—2[m~!4
mz_l]_l.

With relation (b) of MW] in mind, we have
studied numerically, in the perfect lattice
normal mode representation, the evolution
of the kth normal mode of the perfect lattice
as the initial condition in a series of isotopically
disordered lattices. For mass ratios #2:/m: of
5/4 and 2, we determine the decay of mode
£=50 in a 100 particle lattice, i.e., a mode
whose frequency lies in the middle of the
band. For the larger mass ratio #nu/m.=2,
the MW]J perturbation result cannot be ex-
pected to be valid because it [Eq. (A1)] is
derived on the assumption that the deviation
from the average mass at a lattice site con-
stitutes a weak perturbation.

We have also studied the decay of the
highest frequency perfect lattice normal mode
for a series of isotically disordered lattices
with mi/me.=5/4. The decay of this mode is
of particular interest for two reasons. First,
MW] have established a connection between

it and the decay of <M(0)M(r)>, relation (a);
and second, the expression which they give
for the damping constant must be carefully
interpreted because the denominator in Eq.
(A2) is zero.

2. Formal Solution of the Initial Value

Problems

In this Section we obtain formal solutions
of the initial value problems associated with
the decay of a perfect lattice normal mode
and the decay of the dipole moment correlation
function. The formal solutions are well-suited
for numerical computation.

The kinetic and potential energy quadratic
forms for a one-dimensional harmonic crystal
lattice can be written most conveniently in
matrix notation as

%x{//x‘ and éxT Zx,

respectively, where _# is a diagonal matrix
whose ith diagonal element is the mass of the
particle at lattice site 7. In this paper we
assume that the lattice is composed of an
equal number of particles of mass 7 and mass
me. " is the potential energy matrix and
exhibits the periodicity of the lattice. The
quantities x and X are column vectors whose
ith components are, respectively, the displace-
ment from equilibrium and the velocity of
particle z. The superscript 7 denotes the
transpose of a matrix (or vector). The clas-
sical equations of motion in this notation are

ME=— X . (B1)
To solve Eq. (B1), introduce the vector
§=_#'*x and obtain
é: - VE )
where V=_z7 1> _z /2. Then define

the new vector &=_7 7€, where the jth
column of 77 t;, is the jth normalized eigen-
vector of the symmetric matrix V associated
with the frequency w;. [.Z is an orthogonal
matrix and >, 75:2=>.7%*=1.] The equation
J k
of motion in the new variables is diagonal in
form
=R, (B2)
where the jth equation of motion is &&=
—w;#&Z;. The general solution of Eq. (B2) is
& (1)=82-" sin Qe &? (0)+cos P (0) (B3)
and
& (z)=cos RrP(0)—Q sin e (0), (B4)
where the matrix functions sin £z and cos 87

o 2m-+1 oo
—1)ym 5 Q21 —1)m
are MZEO( ) G )1 and EO( )

i .
respectively.

-;‘szrn
(2m)! ’
The general solution of Eq. (Bl) is

X(2)=_# ~1*. T R sin L= 0)

X

A Y2 T cos R (0) (B5)
and
X (©)=_# 12T cos Rt (0)
— AV T Rsin Qec?(0);  (B6)

and in terms of the initial values x(0) and
X (0) the solution is
xX(t)=_z7 ~2V-Y2sin V2% _z7 /2% (0)
A A ~Vicos Ve _z72x(0) (B7)
and

X (0)=_# "2 cos VVr_z7 /2% (0)
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— A V2 gin Vi _z7 x(0).
(B8)
Now consider the initial state of the lattice
x(0)=0 and x (0)=¢t:, where ;2 is the kth
normal mode of the perfect lattice in which
all particles have the harmonic mean mass
p=2(mi~'+m>"1)"t. The positions and veloci-
ties of the lattice particles at time ¢ are
x(r):,/Z*‘/ZV—‘/Z sin V1/2T‘//1/2tk<0)
and
X (0)=_77 "Y%cos Vr_z '*t, . (B10)
The components of x(r) and X (¢) in the &
direction are, respectively
Qu(m)=#:""x(z)
=t,07 7~V -Vegin VWi g7 1,0
(B11)

(B9)

and
Qu(r) =17 3(z)

=107 _7 Y2 cos Vi _z7 V2,2, (B12)
Eq. (B12) is the formal solution of the e-
quations of motion describing the decay of
the perfect lattice normal mode ;. In the
case of the perfect lattice, Eqs. (B11) and (B12)
reduce to

Q)= V! sin w; V7
and
Qk(r):cos w;O7,
The oscillatory decay in the amplitude of

Q«(7) and Qi(z) obtained by MWJ® [see Eq.
(A1)] and the oscillatory decay found in the
numerical computations described in the next
Section is caused by the irregularity in the
distribution of the masses m: and ..

We now obtain an expression for the en-
semble average dipole moment correlation
function for the same chain of alternately
charged ions considered by MWJ. The dipole
moment is given by

ME@)=e3(~1in(?)

=eqTx(z) (B13)
where q is a column vector whose #th com-
ponent q; is (—1)!, and e is the magnitude of
the effective ionic charge. Periodic boundary
conditions are assumed. [g is proportional to
the highest frequency normal mode vector
tx® of the perfect lattice; q= N2ty where
N is the number of particles in the lattice.]

Form the product M(0)M(z) using Eqgs. (B13),

(B5) and (B6),
MO)M (r)=eq"x (0)][q”x(r)]
=[S AT 0)]
% ['J_zlq_,///j—v%fxz—l sin 22);1&2(0)

+q; A7V T cos 27);1&2(0)] .
(B14)

In a canonical ensemble the coordinates and
velocities have a simple gaussian distribution,

N exp [~ ﬁ% 20)" (0)

1 b of 2
— gy @078 @’(0)],

so the ensemble averages of {&Z(0)&(0)>

and (@AO)@U(O)) are, respectively, k79 and
0. Using these ensemble averages the en-

semble average <M(0)AM(T)> can be written
compactly as

(M(OYM(2))
=Ne*kTty 0T _p -1V -1/2
Xsin VV2c_z7 —12f 50 | (B15)
Upon comparing Egs. (B15) and (B12), it is
seen that the ensemble average <M(0)M ()
/Ne*kT is

(MOYM()YINetk T=txO7x™ () | (B16)

where xV)(z) is derived from the initial con-
dition for the lattice: x(0)=o0 and x (0)=_zZ
Xty©®. Relation (a) of MW]J is an approxi-
mation in which _#Z ' is replaced by £'1 in
X (0)=_#Z ~"t~?, where p'=1/2(mi -+ mz").

3. Numerical Computations and Results

The method used for computing x(z) and
x (7) from initial conditions is best illustrated
by considering the series expansion of any
one of the three matrix functions of V2 in
Egs. (B7) and (B8), e.g.,

702 To* 78

Ccos VI/ZTZI"QTV“F Evzféﬁ
These series involve only integer powers of
the known matrix V and therefore can be
computed term by term. For a value of o
which is roughly one-eighth of the shortest
characteristic period of the perfect lattice
composed of particles with the harmonic mean
mass, the first eight or nine terms in the
expansion of cos V% are sufficient to give
values of its elements correct to eight signifi-

Vit-... (Cl)
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cant figures. In this way elements of the
propagator matrices in Egs. (B7) and (B8) are
calculated using an IBM 7090. Once these
matrices are known, the values of x(zo) and
X (7o) can be computed from the initial con-
ditions. This process, when repeated » times,
produces values of x(nco) and X (n70).

We first describe the calculation of Q7o)
for a series of isotopically disordered lattices
with 7 /m:=5/4 and mi/m:=2. The lattices
consist of 100 particles, 50 of mass 1.00m2 and 50
of mass 1.25m[or 2.00m] with periodic boundary
conditions. The mass distributions are formed
by the computing machine using a random
number generator.® The initial perfect lat-
tice normal mode is #7=(2/%/10)(---,1,0,—1,
0,1,0,—1,0,---). The associated frequency is
0 =(1+4/5"% [or 0@=1+1/2)"*] in time
units for which the maximum frequency is
21/2(14-4/5)Y2 [or 2Y%(1+1/2)"/?]. The time in-
terval 7o which is used in these calculations
to=n/40(), one-eighth of the period of the
corresponding perfect lattice normal mode.
From the computed values of Qso(n70) for each
random lattice, we have determined the re-
lative maxima of the oscillating decay curve

for Qso(r) by selecting the relative maxima of
Qso(nzo). In this way a lower limit for the

Q)

decay curve envelope is determined. In Fig.
1 these estimates of the relative maxima of

Qso(?) are plotted as a function of =8z for
mifm:=1.25 for 23 isotopically disordered
lattices. The dashed curve in Fig. 1 is the
envelope of the decay curve Eq. (Al) obtained
by Maradudin, Weiss, and Jepsen.® It is seen
in Fig. 1 that the average behavior for the
set of decay curves is not inconsistent with
Eq. (Al). During the time interval plotted,
a signal propagating with the speed of sound
travels approximately 1/10th of the length of
the 100-particle lattice. Particularly for times
between =8 and 20, the average curve is
systematically larger than the simple expo-
nential decay formula. This deviation of the
average decay envelope from the simple
relation exp (—1I's7), and the distribution of
individual decay curves around the average
should be interpretable within the framework
of the perturbation theory of an isotopically
disordered lattice consisting of a finite number
of particles. Because we have not calculated
the next order correction to I's, using the
MW]J procedure, we can only speculate con-
cerning the deviation of the average decay
curve from exp (—I'sr). However, we have
experimented with the random mass distri-
butions by combining a mass distribution

| 2 3

4 7 5 6 7 8

Fig. 1. Lower bounds of the relative maxima of the oscillations of Qso(c) vs ¢ for 23 different
isotopically disordered 100-particle lattices in which the mass ratio m;/mz=5/4. The time 7 is
measured in units of 75, the period of the monatomic lattice normal mode k=50 when the
particle mass is equal to the harmonic mean of m; and my. In the time =8, a signal propa-
gating at the speed of sound travels approximately 1/10 th of the length of the 100-particle

lattice.
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giving a high decay curve with one giving a
low decay curve. In such a case, when the
initial value problem for the combined 200
mass system was solved, the corresponding
decay curve was considerably closer to exp
(—1'57) and to the average of the two original
decay curves.

In Fig. 2 analogous estimates of the relative

maxima of the decay curves of Qso(‘l’) for 10
of the mass distributions included in Fig. 1
are plotted for the case in which mi/me=2.
The dashed curve, which is the plot of the
first order perturbation value of exp (—1s07)
for the mass ratio mi/m:=2, clearly does not
represent the average behavior for the 10
lattices. The average periods of the oscil-
lations in this case as determined form the

values of Qso(?’l‘t’o) deviate noticeably from the
period 8to=2x/w{). In the calculations in the
preceding case, m.i/m:=5/4, the average period
remained within one percent of 2z/w() for
time intervals two to three times as long as
that covered in Fig. 1.

Finally, in Fig. 3, analogous estimates of

the decay curves of (M(0)M(c)y/Ne*kT are
plotted as a function of the time z for the
mass ratio 5/4 for 10 disordered lattices. The
basic interval ©o for these calculations was
chosen as to=n/4[2(1+4/5)]"/2. In addition to
computing

{M(0)M ()Y Ne*k T =07 x100(c)

according to Eq. (B16), we have computed
simultaneously the quantity pg='¢{)” 27 x1 (<)
which is equal to £ 'Qie(r). Knowing these
two quantities, relation (a) of MW]J can be
tested. A comparison of the periods and the
phases of #{7x1(z) and g ') 2 x1(c)
shows that they are approximately the same. If
the masses m; and ms were equal, then ()" x 1% (z)
would equal p Q)" _#Z x"(z). For the 10
isotopically disordered lattices considered here,
and for mu/m:=5/4, the relative maxima of
of t®7x®0(r) are greater than or equal to
the corresponding relative maxima of p't{)r
X _#x1(z). Thedeviation of the ratio of the
corresponding maxima from the value one
varies from lattice to lattice and varies in the
course of oscillation of a particular lattice.
The variation in the ratio is necessarily less
than |mi—pgl|/p but does cover the entire range
between 0 and 0.02.

During the first eight oscillations, the compu-
tations for Fig. 2 exhibit a large erratic
variation in the amplitudes of successive
maxima which is not found in the computations
for Figs. 1 and 3. The amplitudes of successive
maxima for two extreme examples are identi-
fied in Fig. 2 by dots in combination with
diagonal lines running either from left to
right or right to left.

4. Concluding Remarks

Large values of the mass ratio in the dyna-
mical problems considered here lead to strong
coupling between the unperturbed or perfect
lattice normal modes. Consequently, a low-
order perturbation calculation of the damping
constant /x would not be expected to be valid.
The expression for I'; obtained by MW] can-
not be used to estimate the numerical value
of I'i for the highest frequency modes, even
for values of the mass ratio close to unity.
Nevertheless, in an isotopically disordered
lattice consisting of a large number of parti-
cles, it would be expected from the law of
large numbers that the decay of a perfect

lattice normal mode Qk(r) in either of the
extreme cases considered here would be given

by the average Q(r) for all isotope configu-
rations. This expectation is based on the

structure of the expression for Qk(‘l’), which is
basically an average over the entire lattice.
Finally we wish to draw attention to a new
representation of the propagator matrices in
Egs. (B5) and (B6) which may facilitate the
calculation of the early stages of the decay

of quantities such as Qu(r) for N large and
k~N. The representation is based on a
well-known form of the generating function
for Bessel functions?

cos zw=J o(z)+221 Jen(2) cos (2 sin~! w)

— Jo(2)-+-2 ;;1 (—1)" Jan(2) Ten(w),  (C2)

where J:n(z) is the Bessel function of the
first kind, and 7%:a(w) is the Tchebycheff
polynomial
Ton(w)=cos (21 cos™'w).

If the time scale in the dynamical lattice
problem is adjusted so that time is measured
in units of the maximum frequency of a lat-
tice composed entirely of light atoms, then
the normal mode frequencies appearing in the
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Fig. 2. Lower bounds of the relative maxima of the oscillations of Qso(c) vs = for 10 different
isotopically disordered 100-particle lattices in which the mass ratio m;/m;=2. The time z is
measured in units of 75, the period of the monatomic lattice normal mode k=50 when the
particle mass is equal to the harmonic mean of m; and m,. In the time r=8, a signal propa-
gating at the speed of sound travels approximately 1/10th of the length of the 100-particle
lattice.
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Fig. 3. Lower bounds of the relative maxima of the oscillations of <M (0)M (¢)>/Ne2kT vs< for 10
different isotopically disordered 100-particle lattices in which the mass ratio mi/m.=5/4. The

time = is measured in units of ¢\J), the shortest period of the monatomic lattice normal modes
when the particle mass is equal to the harmonic mean of m; and m,. In the time =8, a
signal propagating at the speed of sound travels approximately 1/14th of the length of the
100-particle lattice.
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‘matrix cost® are all necessarily less than Judith, and Karl Rubin for generating the
first group of random mass distributions.

It is then possible to replace cos 72 by!®

JAEN42 3 (— 1) en(e) T )

"one.

Hori, J.:
:and larger?
Rubin, R. J.:
the average behavior will decrease.
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DISCUSSION

How will the situation change if the number of particles becomes larger

As the number of particles in the lattice increases, fluctuations from
For sufficiently small values of the mass difference

and for 2 not too large, the average decay curve should be the same as that given by

MW].




