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Two phonon infra-red absorption spectra and Raman scattering spectra
provide information about both the phonon spectra of crystals and the
interaction between phonons and electrons in filled valence bands. These
optical spectra depend on both the phonon frequencies and eigenvectors
and, in principle, one could test lattice dynamical models more fully than
by just fitting neutron scattering data. The difficulty is, of course, that
we know even less about the electron-phonon interactions and in this
paper we discuss various approaches to this problem.

3 !• Introduction

Two types of intrinsic optical spectra can be
■observed when light photons interact with a
pair of phonons in a crystal: one the infra-red
absorption spectra, and the other the two
phonon Raman scattering spectra. Since the light
wave vectors used in these observations are
small compared with the reciprocal lattice vec
tors the phonons conserve momentum by having
■equal or equal and opposite wave vectors and
thus all phonons in the Brillouin zone can con
tribute to the resulting spectra. The reasons for
studying these spectra, apart from their intrin
sic importance, is that they provide information
about both the phonon spectrum of the crystal
.and the electron phonon interaction. One can
obtain direct information about phonon disper
sion curves by neutron scattering measurements
but these provide little or no information about
phonon eigenvectors. One can also obtain in
formation about electron-phonon interactions
from transport phenomena but these are usually
•concerned with the interactions between elec
trons in the conduction band and phonons
rather than the interactions between electrons
in the filled valence bands and phonons. The
infra-red and Ramam spectra depend on the
frequencies, occupation numbers and eigenvec
tors of the phonon states and also on the in
teractions between phonons and the electrons in
the valence band. If all these quantities were
known the problem of calculating the spectra
would be almost trivial but in practice this in
formation is simply not available and we are

forced to use phenomenological theories for
both the phonon spectrum and the electron-
phonon interactions.

In this paper we shall first outline the usual
treatments of these ploblems, then comment on
their physical justification and finally discuss
some of the results obtained to date.

§ 2. Lattice Dynamics
In treating the dynamics of a crystal with n

atoms per unit cell one is dealing with sets of
3 n equations and it is convenient to use 3 n
component vectors for momentum, P, and dis
placement, U and 3nx3n matrices for force
constants etc. Using this matrix notation we
can write the lattice hamiltonian, H, in the
harmonic approximation as:

/f = i 2 P{l)M-'P(l)+h 2 u(l)0(l, l')u(l') (1)
I  I, I'

where 0{l, I') is the force constant matrix con
necting atoms in unit cells / and /', M = m(k)
5,,,-: m(k) is the mass of atom type k and s is
an index running from 1 to 3n. It is well
known'' that the lattice dynamical problem re
duces to the problem of finding the eigenvalues
(o^(q, s) and the eigenvectors W(q, s) of the
dynamical matrix in reciprocal space D(q),
which is given by the expression:

D{q)=J<l>^q,l)M-y'0(l,l')M-'''<l>{q,l') (2)
where ?!(?,

thus W*{q,s)D{q)W{q,s')=w\q,s)5,,,'. (3)

Once this problem is solved we can then write
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the displacement and momentum of the nuclei
in terms of phonon destruction, a(q,s), and
creation, a*(q,s), operators as follows"

«(/)=(^)''' I {<o(q,s))-"'M-y'
X {a(q, s)^{q, l)W(q,s)+c-c]

X[a(q,s)^(q,l)¥(q,s)-c-c]. (4)

When these expressions are substituted back
into eq. (1) we obtain after some reduction

2 iia>(q,s)[a*{q,s)a{q,s)+c-c]

= 2 no>(q,s)[a*(q,s)a(q,s) + ̂]
g,8

= 2 ho)(q,s)[n(q,s)+^], (5)
g.«

where n(q,s) is the number of phonons occupy
ing state {q,s).

§ 3. Infra-Red Spectra

The two phonon infra-red spectra is treated
formally by assuming that the electric dipole
moment of a unit cells contains contributions

of the form

2 «(/)C(/,/')«(/'). (6)

where C(/,/') isa3x3«x3« tensor coupling
unit cells / and /'. The absorption or emission of
radiation polarised in the x-direction is then
proportional to If we substitute for «(/)
in eq. (6) from eq. (4) and exclude terms which
do not conserve wave vector or energy with
the incident radiation w, we obtain, after some

reduction

2 (m(q,sMq,s'))-' \C,{q,S,s')\'

{{n(—q,s) + \)(n{q,s') -|-1) 5(o) - a)(q,s)—(o(q,s'))

+ {n(—q,s) + l) n{-q,s') 3{w—(o(q,s)+w{q,s'))

+n(q,s){n(q,s') -|-1) 5(a)+w{q,s)-a){q,s'))
+n{q,s) n{—q,s') d(a)+a)(q,s)+w(q,s'))}, (7)

where Cx{q,s,s')= 2 W*(q,s)^^{q,l)M~^'^

M~^^^^{q,l')W(q,s'). The 5-fxmctions requiring
negative o) correspond, of course, to emission
and the net absorption is the difference be
tween absorption and emission at the same fre
quency.

§4. Raman Spectra

The two phonon Raman spectra is treated for
mally by assuming that the polarisability tensor

contains a contribution of the form

^=lu(l)^{l,l')u(l'), (8>
v

where ̂ (/, /') is a 3 x 3 x 3 n x 3 «tensor coupl
ing unit cells / and /'. If the incident radiation has
a polarisation vector E the induced dipole mo
ment is given by

^ = ̂E. (9>

As before the emission of radiation polarised
in the x-direction is proportional to x\^ and
we can, by very similar reduction, write

« 2 (w(q,s)w{q.s')r'\^Aq,s,s')\''
q,a,»'

X {(«(—^,i)-|-l)(M(^,/)-f-l)5(da)—a)(^,j)-o)(^,s'))'
-1- {n{ — q,s) -b 1)«(—q,s')3(Ao)—Q)(q,s) +w(q,s')\
■\-n(q,s)(n{q,s') -h 1) 8{Aa) -|- a>(q,s)—a>(q,s'))
+ n{q,s) n(—q,s') d(Aa)+a)(q,s) -|- a)(^,/))}, (lO).

where Jo) = incident frequency — scattered fre
quency and ^x(q^ s, s') is given by a similar ex
pression to C^{q,s,s').

§ 5. Discussion
It has been shown above that the two pho

non infra-red and Raman spectra depend on the-
following; the matrix elements of the electron-
phonon interaction in normal coordinate repre
sentation, the occupation numbers of the pho
non states, and finally the density of two phonon
states. The main purpose of studying these-
spectra is to relate them to the lattice dynamics,
of the crystal and to attempt to understand the
nature of the electron-phonon interaction. This-
last point is crucial to an understanding of the
nature of phonons themselves since phonons are;
closely coupled vibrations of cores and elec
trons. We shall illustrate this point as follows.
The direct interaction between nuclei in a typ
ical crystal is approximately 10' eV but this is
largely screened by the tightly bound inner core
electrons and the resulting interaction reduced
to approximately 10 eV. The typical displace
ments of these cores in lattice vibrations wouldl
then involve energies of 10"' eV, much larger
than most phonon energies. Thus it follows,
that the loosely bound valence electrons play a
vital part in lattice vibrations. In other words.
in order to account for the energies of phonons it
is necessary to include the interaction between
cores and valence electrons.

Fortunately the Born-Oppenheimer approxi
mation shows that a knowledge of the average;
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rather than the instantaneous positions of the
electrons is sufficient to determine the inter

action with the cores. Butcher and Sennett^'
have developed a general treatment of this prob
lem by use of the variational method. They
write the electronic wave functions as W(r,X,ai)

where r and X are electron and neuclear coordi

nates and ai are variational parameters. The
effective potential function is then

s \r, X, ai)(H- Tn)W(r, X, ai) dr,

where H is the crystal hamiltonian and is
the nuclear kinetic energy. The variational
principle then requires that

d0(X,ai)ldai=O (12)

for all i and thus the equations of motion for
the nuclei become

-MX= d0{X, ai)ldX

= d0(X, adIdX. (13)

The force constants represented in the above
■equation can be split into long range Coulomb
forces and short range forces described by ad
justable parameters. The Coulomb forces are
usually expanded in terms of multiple moments
of the charge distribution at each lattice site
and interactions from moments higher than di-
pole are thrown into the short range interac
tions. If we follow this procedure and make
the dipole moments depend only on the varia
tional parameters eqs. (12) and (13) can readily
be transformed into the shell model equations
■of motion^'.

The shell modeP' and similar models'" have
been very successful in fitting phonon dispersion
•curves and is undoubtedly the best interpolation
formula currently available. However we would
like to make the following comments:

(i) There are no measurements of eigenvec
tors to test the model against and thus
there is some doubt that parameters cho
sen to fit the eigenvalues may not be
giving correct eigenvectors.

(ii) There are alternative ways of describing
the electron distribution other than mul-
tipole moments which might lead to bet
ter results.

(iii) The description of electron distributions
in terms of localised real space variables
is very artificial since the interaction is
not with a dipole localised at a lattice

site but with a polarisation wave, i.e. a,
polar exciton. This is evident if one
thinks of a phonon as being renormal-
ised through its interactions with the
elementary excitations of the static lat
tice.

We next consider the problem of calculating
the additional electric moment or polarisibility of
the crystal when phonons are present. These
extra contributions can be represented in the
lattice hamiltonian as anharmonic terms. Cow-
ley^' has given a very complete calculation of the
two phonon infra-red and Raman spectra based
on this approach and this method has many ad
vantages. However, we would like to make the
following comments on this.

(i) The use of an anharmonic lattice hamilton
ian for predicting infra-red spectra is well
founded since the frequencies used are
small compared with the band gap but
in Raman spectra the frequencies used are
seldom small compared with the band
gap and the full crystal hamiltonian
should be used. For example the lattice
hamiltonian could not predict the res
onant Raman effect®*.

(ii) When anharmonic terms are added to the
lattice hamiltonian one must still make
drastic simplifying assumptions to reduce
the disposable parameters to manageable
numbers.

As a consequence of these considerations we
feel that a phenomenological apporoach aimed
at evaluating the dipole moment and polarisi
bility tensors as a function of frequency is bet
ter. One would then, with the aid of a lattice
dynamical model, evaluate these as functions in
real or reciprocal space and thus obtain infor
mation about the electron phonon interactions
involved.

We have so far only attempted to evaluate
the tensors in real space, but this is already a
problem of some complexity and the results are
only tentative. The difficulty is that the spectra
depend on several functions of frequency, in
particular the density of two phonon states and
the eigenvectors. Fortunately some features arise
primarily from one or the other of these func
tions. It is known that most of these spectra
bear some resemblance to the density of two
phonon states (e.g. critical points) and this is
one of the simplest and most reliable quantities
to calculate. Other features such as the absence
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of overtone contributions in some infra-red
spectra arise from general symmetry restrictions
on the eigenvectors". Symmetry arguments can
be used on the real space representations of the
dipole moment and polarisibility tensors to re
duce the number of disposable parameters but
finally one must make drastic assumptions about
these and then see if the computed spectra bears
any resemblance to the observed results. The
usual method is to assume that all contributions
beyond first or second neighbour lattice sites are
zero.

Dolling and Cowley®' have used this pheno-
menological approach and the shell model to
compute the two phonon infra-red spectrum of
silicon and germanium. They use the real space
representation of the dipole moment tensor with
first and second neighbour contributions only.
With only first neighbour contributions the re
sults were wildly wrong and even the best sec
ond neighbour models were very disappointing.
There could be two reasons for this failure.

(i) The eigenvectors of the shell model they
used may be badly wrong in spite of the
fact that the eigenvalues are very good.

(ii) The restriction of the real space repre
sentation of the dipole moment tensor to
first and second neighbour contributions
may be a gross oversimplication.

We cannot comment on the first possibility
for lack of experimental data but if the failure
were largely due to the second possibility then
we would suggest that more progress could be
made by working directly with the reciprocal
space representation of the dipole moment tensor.
This alternative approach has been outlined by
Hobson and Paige" who consider the different
possible virtual transitions that contribute to the
dipole moment tensor. These are represented
diagramatically in Fig. 1.
In Fig. 1 a the electron makes a virtual transi

tion from {m,k) to (m', k), interacts simulta-

I  . I 'I Cond.I m:k^ ^.k . Band

/  Valence
^J-JC^.k ^..JCjh.k Band

K  K
(a) (b)

Fig. 1. Virtual transitions in two phonon infra
red absorption.

neously with a pair of phonons (s, q) and {s', —q),
then returns to (/n, k). In Fig. 1 b the electron
makes a virtual transition from (m, k) to {m', k),
interacts with a phonon (s, q) is scattered to
(m", k-\-q) then interacts with a second phonon
(s', —q) and is scattered back to (m, k). The
virtual transition in 1 a has an energy denomi-
nator=(£(/n', k)—E{m, k)) and that in 1 b an ener
gy denominator (E{m', k)—E{m, k))(E(m", k+q}
—E(m, k)). The energy denominator of 1 b will
give an asymmetry to the dipole moment tensor
since it is a minimum at the indirect band gap.
We would thus expect the electron-phonon

coupling to be greatest when the phonon wave
vectors were close to that of the conduction

band minimum. For example we would expect
that in silicon phonons near the X point would
play a more important role than others, while
for germanium those near the L point would be
dominant and thus we would anticipate that dif
ferences between the infra-red spectra of the
two would illustrate this*. That this is so can
be seen in Fig. 2. Here the combination TO+
LA(L) is forbidden by crystal symmetry but
TO + LA(X) is allowed. Now for germanium
the peak at TO -h LA(X) is very weak while
that in silicon is relatively much stronger. In
this case the effect is accentuated by the fact
that the matrix element is increasing in both
cases as one moves L^X. Further if Ge is al-

—r~n—' ^ '350\ 400 450 500 550
\ GERMANIUM SCALE IN CM"'

GERMANIUM

I I I I I
500 700 800 900 lOOO

SILICON SCALE IN CM'' J

Fig. 2. Comparison of lattice bands in silicon
and germanium.

» Tins argument assumes, of course, that the
eigenvectors and joint density of states are fairly
similar.
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loyed into silicon the TO + LA{X) peak disap
pears by the addition of 6% Ge and, of course,
the indirect band gap crosses from X-^L at Vl%
Ge"'.

The main difficulty in working with real space
representations is that as one progressively limits
the summation to nearer neighbours, one pro
gressively introduces more restrictions on the form
of the tensor than are actually required by crystal
symmetry. Dolling and Cowley's work clearly in
dicates that for the dipole moment tensor the
restrictions imposed by taking first neighbour
terms only are far too severe. In the case of
two phonon Raman spectra of GaP"' and Na
Cl"' the experimental results indicate an unex
pectedly severe restriction namely the very much
greater intensity of the Ff' contribution to oth
ers. If we confine our attention to the Fx
spectrum and, as a first approximation, assume
that other contributions are zero we find that

even the first neighbour contribution to the po-
larisibility is not sufficiently restrictive. To ob
tain the required restriction we must impose
further constraints on the parameters. One way
of achieving the required selection rule is to as
sume that the porarisibility tensor is affected
only by displacements along the bond joining a
pair of neighbours and further, that the principle
axes of the tensor are parallel or perpendicular
to the bond. When this is done the tensor has

the form

otifi +jj + kk)rr-\- fi rrrr

where i,j and k are unit vectors along the co
ordinate axes and r is a unit vector along the
bond.

We hope to present results of calculation of
the Raman spectrum based on this assimiption.
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DISCUSSION

Cardona, M.: How justified are you in saying that the main contribution to electron-
phonon interaction comes from direct and indirect lowest gaps when the density of states
is so much larger at higher critical points of the saddle-point type (~100 times) so as to
overcome energy denominator effects ?

Johnson, F. A.: The energy denominators are squared in the final expression so this
enhances the importance of low energy indirect transitions but strictly one must include
all possible indirect band gaps. It may turn out in a detailed calculation that indirect
gaps other than the lowest may be important.
Smith, S. D.: The suggestion was made that considering the electron-phonon interaction

responsible for 2-phonon absorption in terms of virtual valence-conduction transitions specific
points in the zone could be distinguished. If so, a material like InSb with a small direct
gap might give observable effects in a magnetic field. Are there any criteria to indicate
the conditions for observation of such effects?

Johnson, F. A.; There are no hard criteria. Hobson and Paige (Proc. Phys. Soc. (London),
88 (1966) 437) have observed changes in the infrared lattice bands of Si due to strain which
appear to come primarily from changes in the conduction band.


