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Hot Carriers and the Path Variable Method
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The Boltzmann transport equation describing a system of charge car
riers in a strong electric field is transformed to a co-ordinate system
determined by the collision-free trajectories of the particles. This formu
lation avoids the use of Legendre polynomial expansions and many of
the approximations usually introduced in affecting a solution of the hot
carrier problem.
A one dimensional integral equation is formulated for the energy

distribution and is solved numerically. Energy distributions are computed
for both n and /"-type germanium at 77°K for several values of the electric
field and are in excellent agreement with the experimental results.

§ 1. Introduction

The usual approach to the theory of transport
phenomena in a strong electric field is based on
an approximate solution of the Boltzmann trans
port equation. The steady state distribution
function /(/») for the case of a uniform electric
field E is determined by eq. (1).

eE-Epf(p) = Cf=\dp'[f(p')Tp,p-f(p)Tpp,], ( 1)

where p is the momentum vector, Tp p, is the
transition rate between states p and p' due to

collisions, and C is the collision operator.
For spherical constant energy surfaces and

isotropic scattering the distribution function can
be expanded in Legendre polynomials in d, the
angle between the momentum vector and the
applied electric field.

/(p)=5'o(e) + Si(£)^i(cos ̂ j+SjjfijPjlcos (?)...,

The insertion of this expansion into eq. (1) then
leads to an infinite set of coupled integro-dif-
ferential equations for the The standard
approximation at this point is to neglect all but
the two lowest order Legendre polynomials and
to seek approximate solutions of the resulting
equations.
In this paper we present a theory of hot carriers

which does not employ Legendre polynomial
expansions or arbitrary truncation procedures.
In § 2 the Boltzmann equation is transformed to
a co-ordinate system which follows the field
dependent trajectories of the particles in the
absence of collisions. This procedure transforms
the Boltzmann equation into an integral equation
for the distribution function.

The case of hot carriers is treated in § 3,

where we include energy losses due to optical
phonons and momentum relaxation due to both
acoustic and optical phonons. The resulting
transport equation can then be reduced to a
single one dimensional integral equation for the
isotropic part of the distribution function. Having
solved this equation, any of the terms in eq. (2)
may be calculated by integration.
The kernel of this equation has been calculated

numerically with the aid of an IBM 7044 and
the integral equation is solved by an iterative
procedure. The results for both n and p-type
germanium are presented and discussed in § 4
and are shown to be in excellent agreement with
the experimental results.

§ 2. The Path Variable Method

We first consider the Boltzmann equation in
the relaxation time approximation:

^f{p, r,t)=-_  (/-/o)

where V=Pp e and f„ is the equilibrium distribu
tion. We now transform to a co-ordinate system
determined by the collision free trajectories of
the particles

r-^r*{s) , p-*p*{s) , t->s ,

^=V, r*(t)^r and , p*(t)=p
as as

In these co-ordinates eq. (3) becomes:

df _ -As) fojs)
ds t{s) t(s)

which then yields
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This generalization of Chambers' method'"^' will
now be applied to the transport eq. (1), where
one does not employ the relaxation time ap
proximation. Introducing the transformations
(4) in eq. (1) we obtain:

.  (6)

This may now be transformed to the following:

f(p)=\^f(p')K(p', p)dp';
is:(/,,)=j-Ar,,,^„exp[-[-j^]. (7)
An alternate form of this equation, which will
be used subsequently, is obtained by separating
the distribution function f(p) into Sf, and A, its
isotropic and anisotropic parts respectively,
f=S^-\-A. One then decomposes the collision
term as follows:

iV(x)=f dyN{y) 2 a,nKa(x, y+mS)
Jo m=-l

^ ^ ^

Cf=CSo + CA = CSa-
A

where the effect of collisions on the anisotropic
part of the distribution function is described by
an energy dependent relaxation time
The path variable transformations then yields:

where

N{x)=-\/X Sa(x) , x=j^, ^""fr '

^  rvr+vr dt r +1 n
K^(x, y) = r\ "T®xp -lanTPn ,

J1V7-V71 t '^L x—1 J

_\/2mkT
'AeEkj,(\)

j.=R.al part ot
a(t^A-b^) {t'-a^Kt^-b^)

t  It''

F=eE . ( 9 )

§ 3. Phonon Scattering

In this section we apply the above formalism
to the case of hot carriers, where we include

energy losses due to optical phonons and mo
mentum relaxation due to both acoustic and

optical phonons. One can readily show in this
case that the relaxation of the anisotropic part
of the distribution function is indeed given by
the usual relaxation time for any anisotropic
distribution. This is rigorously true for optical
phonon scattering and is valid in the limit of
elastic acoustic phonon scattering.

Inserting the usual expressions for the transi
tion probabilities in eq. (9) one can rewrite this
equation as follows:

a—-\/y+n8+~\/x-\-n8, b=\^y+n8—\/x+n8.

N(x) is simply the number of carriers per unit
energy range, r^(l) is the acoustic phonon re
laxation time evaluated at x=l, and ui is related

to the ratio of optical to acoustical phonon
deformation potential constants.
This formulation of the transport equation has

thus resulted in an uncoupled equation for the
isotropic part of the distribution function. Once
eq. (10) is solved one may compute any of the
5„(e) in eq. (2) from the following relation:

S^{x)=S^^dyN(y)K^{x, y) (12)
where the kernel is similar to that appearing
in eq. (10).
The general procedure employed in solving

eq. (10) was to compute the kernel numerically
and then to solve this integral equation by
iteration. The logarithmic divergence of the
kernel at x=j+/w5 was treated by analytic in
tegration over a small range of y enclosing this
singularity. N{y) was taken as constant through
out this interval, which was chosen to be ex

tremely small compared to scale of variation of
N. This typically amounted to taking N constant
over an energy region of approximately 10"^ kT",
which clearly introduces negligible error.
The initial trial function, chosen to be a

Maxwellian distribution, was inserted in the right
hand side of eq. (10), thus generating a new
energy distribution which was then re-introduced
in the right hand side etc. Approximately 10
iterations sufficed to determine an energy distri
bution which satisfied eq. (10) to an accuracy
greater than .01%^.
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Fig. 1 A. Calculated heavy hole energy distribution
for /7-germanium at F=800V/cm (dashed curve).
Maxwellian distribution with same average en
ergy (upper solid curve). Log of probability
distribution (lower curve).

Fig. IB. Calculated heavy hole energy distribution
for p-germanium at £=926V/cm (dashed curve).
Maxwellian distribution with same average en
ergy (upper solid curve). Log of probability
distribution (lower curve).

§4. Results and Discussion

Figures 1A and 1B show the calculated energy
distribution for /J-type germanium at 77°K for
£=800V/cm and £=926V/cm, respectively.
The dashed curve in each case is the calculated

energy distribution N(x)=A\/~x S^{x), where A
is a normalization constant chosen such that

I N(x)dx—\. The upper solid curves represent
Maxwellian distributions with the same average
energy and are presented for comparison. The
lower curves in each of these figures are the
natural logarithm of the probability distribution
|ln 50(6)1. The parameters used are those given
by Brown and Bray."
The relative impoverishment of high energy

Fig. 2A. Calculated energy distribution for n-
germanium at F=12()0V/cm. (dashed curve).
Maxwellian distribution with same average en
ergy (upper solid curve). Log of probability
distribution (lower curve).

Fig. 2B. Calculated energy distribution for n-
germanium at £=2000V/cm (dashed curve).
Maxwellian distribution with same average en
ergy (upper solid curve). Log of probability
distribution (lower curve).

carriers is readily seen from these results as in
the non-Maxwellian nature of the energy distri
bution. It is seen from the |ln5o| curves that
the latter are fairly well approximated by two
straight lines intersecting roughly at the optical
phonon energy of 0.037 eV. Thus the energy
distribution may be approximated by two
Maxwellian distributions with different effective

temperatures above and below the optical phonon
threshold.

These features agree very well with the ex
perimentally determined energy distributions for
heavy holes in /^-germanium. Pinson and Bray/'
for example, have measured average heavy hole
energies of 6=0.0218 eV and e=0.0227eV for
.E=800V/cm and £'=926V/cm, respectively,
while the present calculation yields 6=0.0216 eV
and 6=0.0223 eV. The "kink" in the |ln5oJ
curves at the optical phonon energy fi£Uo=0.037
eV has also been observed by Bray and Kumar.®'
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While no direct measurements have been made

of the drift velocity of heavy holes in />-germani-
um, Pinson and Bray^' have presented results for
R=Vi (Total)/P™s, the ratio of the total drift
velocity (both light and heavy holes) to the
r.m.s. heavy hole velocity, and argue that this
ratio should be slightly larger than the corre
sponding ratio for the heavy holes alone. Here
again we obtain excellent agreement with these
results, the experimental values given at £=800
V/cm and £=926V/cm are £=0.5 and £=0.52
respectively, which are indeed slightly larger than
our calculated values for heavy holes of £=0.467
and £=0.474.

Figures 2 A and 2B show similar curves for
w-germanium at 77 °K for electric fields of 1200
V/cm and 2000 V/cm, respectively. The electric
field is taken in the [100] direction in order to avoid
the complications arising from "temperature"
differences among the [111] oriented valleys.
For this configuration, the relevant electronic mass
is simply the conductivity mass /m*=0.12/W(|.
The coupling constants used are those given by
J^rgensen, Meyer and Schmidt-Tiedemann.®'

It is seen from Fig. 2 that the distribution
functions deviate relatively little from Maxwellian
as compared to those in ̂ -type germanium, this
being due to relatively stronger coupling to opti

cal phonons in the latter case. The calculated
average energies and drift velocities for E= 1200
V/cm and £=2000 V/cm are 1=0.0416 eV,
Fi=0.88x 10'cm/sec and £=0.10eV, Fi=1.3x
10' cm/sec respectively. The experimental values®'
for the drift velocity at these two fields are

10'cm/sec and KrfW 1.2x 10'cm/sec respec
tively.
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DISCUSSION

Reiss, H.: Isn't it important to consider collision integrals using non-singlet distribution
function consideration when highly non-equilibrium distributions are involved.
Budd, H. F.: Although it would certainly be desirable to include many particle distribu

tions in the theory, this is certainly an extremely difficult problem. Even a simple treat
ment based on particle-particle scattering and single particle distribution functions leads to
intractable equations. The present calculation, which neglects these effects, is in excellent
agreement with the experimentally determined average energies and drift velocities. There
are however small differences in the shapes of the calculated and observed energy distribu
tions. For example, the "kink" in the ILn^d curves are observed to be less pronounced
than our calculations indicate. This is probably due to our neglect of hole-hole scattering.
Landsberg, P. T.: The higher terms in the Boltzmann equation would involve electron

or hole collisions and your paper is limitted in generality because these terms do not
occur. We have considered the problem of the steady state distribution under optical in
jection and carrier collisions only. The procedure was somewhat similar to yours. An
integral equation was solved by iteration. The results were given at Exeter Conference in
1962 (Proceedings, p. 857) and in greater detail by C. J. Hearn (Proc. Phys. Soc. 88 (1966)
407).

Budd, H. F.: The inclusion of higher order terms poses no formal problem and may be
accomplished by the same transformations used in the present paper. The resulting equa
tions are naturally far more complicated than our linear transport equation.


