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XI-3. Theory of Sound Amplification in Many-Valley

Semiconductors
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We have developed a theory of sound ampli
fication in many-valley semiconductors such as
n-Ge in a do electric field. This elfect was

discovered experimentally by Pomerantz."
We consider an extrinsic semiconductor with

fully ionized centres so that the total number
of electrons does not change under the influence
of strain. The strain caused by travelling sound
wave produces a small variation of the electron
energy in each valley that is equal to ds^—
A.ikUik+e<p.* Here Atk is the deformation po
tential tensor for the a-th valley, t/jj is the strain
tensor and p is the electrostatic potential due to
space charge redistribution, e is the electron
charge. The travelling wave disturbs the in-
tervalley equilibrium, the quantity dsa being
different for various valleys. The processes of
inter-valley relaxation (with the characteristic
time Te) tend to reestablish the equilibrium.
Such is the mechanism of sound absorption^'®'
that can turn into amplification in the presence
of a dc electric field. The intravalley equi
librium is also disturbed by the sound wave.
It is restored by the processes of momentum
relaxation (with the characteristic time Tp) and
by the processes of energy relaxation (with the
characteristic time n). We confine ourselves to

the case of quasielastic scattering in which zi
is much more than Zp. On the other hand, zi
can be of the same order of magnitude as Ze so
that one should consider both of these mecha

nisms of relaxation simultaneously.
We suppose that the sound wave is sufficiently

long so that the electrostatic potential (p can be
obtained from the neutrality condition J dna=0.

a

Here is the electron concentration change
in the a-th valley.
The electron contribution to the sound attenua

tion constant F for the plane wave with the
frequency o) and the wave vector q can be
expressed through the electron part of the elastic
moduli dXikim as follows:

1 =—— -IradXikim- (1)
p(DWU

* Here and henceforth we use Einstein's sum

mation convention.

Here p is the crystal density, w is the (group)
velocity of sound and u is the displacement
vector, dXikim is given by:

dhkt,n=l A^k^^ . (2)
»  OUlm

Let us consider for simplicity the case where
are only two valleys (or two systems of valleys)
that become non-equivalent under the strain
influence. We suppose also that dei=—dez—8e,
a''xp—a''xx, where a if is the conductivity tensor
for the a-th valley in the infinitesimal electric
field, X is the direction of sound propagation
that is also the direction of the dc electric field

E.

The electron concentration change 8n„ is ex
pressible through the electron distribution func
tion Faip) (p-being the electron momentum) in
the a-th valley. Omitting the terms of the
second and higher order in strain one can write
this function in such a form:

FAp)=F,(p)+FAp)^^^, (3)
(In our case F„(/>) and Fi(/>) do not depend on
a because of symmetry of the problem). Here
T is the lattice temperature, k is the Boltzmann
constant. In order to calculate dn„ it is sufficient
to know only the symmetric part of the function
Fi(p) that is equal to ̂ {Fi(p)+FA—p)). If the
condition zp<zi holds this function depends only
on the electron energy s{p) as measured from
the bottom of the corresponding valley. Let
this function be denoted by FAe). It is the
solution of the following equation:

Equation (4) holds for the case of acoustic in
travalley scattering. It is derived from the
Boltzmann equation and takes into account the
anisotropy of the electron and phonon spectra
and the anisotropy of scattering. The method
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used was worked out by the authors in ref. 4).
Here is the diffusion tensor for E=0, Fo{s)

is the electron distribution function for an un

strained crystal in the dc electric field E, / is
the collision operator averaged over the surface
e—e(p) in the momentum space. The collision
operator I is the sum of the intravalley electron-
phonon collision operator and the intervalley
electron-phonon or electron-impurity collision
operator. The explicit expression for the averaged
operator can be found in ref. 4). The electron-
electron collision operator may be added to / if
necessary.

Equation (4) can be easily solved if the in
travalley relaxation processes are much more
rapid than the intervalley ones.

If electron-electron intravalley scattering is
dominant** so that an electron temperature
exists, the functions Fo(e) and Fifs) have a
Boltzmann-like form;

Fo(£)=G exp(-elkT^) , Fi{e)=AFo(s) .

Here G is the normalising factor and A is given

l-i{l-(VM}coTMVTIT, '

where w is the (phase) sound velocity, V is the
drift velocity of hot electrons that is equal to
V—fixxE'x/TITg being the mobility tensor for
E=0). The relaxation time tm is TM=[Te~^+

The electron temperature can be found
from the relation:

r/-7T.-r'-2-=o.

The "electron heating parameter" g is given by;

^  kT ~\w) '

The expression for in the case of anisotropic
scattering can be found in refs. 4) and 5).
The attenuation constant F for such a case is

i + {i-(K/»v)}VrM'^(r/r,)UJ

where F(0) is the value of an attenuation con

stant for E=0 obtained by Weinreich et al. in
ref. 1).

If electron-electron scattering is negligible the
function F„{e) has the form®':

** One can easily show that intervalley electron-
electron scattering is negligible.

'=<'+srr)'
For Fi(e) we have as before Fi(s)=A'F(s) where
A' is a complex factor analogous to A.
The attenuation constant r(E) in this case is

given by:

{\-(Vlw)}(\+coW)r(E)=
l + {l-(F/)v)}VrM'(«W«i )

x™r(0), (6)

here

V  -)Vvxr(/n+l)Jo \ gj

=flr»+'!p-(w+l, flr+m+2, g).

W(a, b, x) is the second confluent hypergeometric
function.

The expressions (5) and (6) are valid if im
purity intervalley scattering plays a dominant
role and the electron intervalley scattering cross-
section, S, is independent of the electron energy
e. The cases of more complicated dependence
S(e) can be treated with the same method. One
can obtain expressions of the same structure for
the case of phonon scattering. It is interesting
to note, however, that the corresponding transi
tion time Te becomes exponentially dependent
upon the electron temperature T^.
Let us observe that the expression for F

changes its sign if the drift velocity of hot
electrons exceeds the sound velocity. It means
that the sound amplification takes place.
The general case of an arbitrary direction of

sound propagation and an arbitrary direction of
the dc electric field may be investigated in a
similar manner.

It is a very difficult problem to solve eq.
(4) if ri~re. Some results can be obtained for
the comparatively simple case Ti>Te- It should
be noted that in this case the attenuation con

stant F{E) changes its sign at the value of the
drift velocity V that in general is not equal to
the sound velocity w.
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