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The results of our calculations on magnetic field effects on static shield
ing are discussed. The quantum analogue of the Debye-Thomas-Fermi
(DTP) shielding law bears quantum corrections with concomitant spatial
anisotropy. Improvements over earlier nondegenerate DTP calculations
are discussed, and the role of de Haas-van Alphen (DHVA) oscillatory
terms in the degenerate limit of the DTP law is discussed in relation to
measuring g(,m/mi,). In the quantum strong field limit the long-range
character of the Priedel-Kohn "wiggle" is destroyed, (appropriate experi
mental conditions are realizable in some semiconductors). Finally, in the
degenerate-DHVA limit, the long-range character of the Priedel-Kohn
"wiggle" is restored, and it is shown that DHVA oscillatory correction
terms are "washed out".

§ 1. Introduction

An account of the results of our calculations

on the influence of a magnetic field on the static
shielding of a point charge is presented here.
The calculations were carried out using a thermo-
dynamic Green's function formulation of the
random phase approximation (RPA) description
of the inverse dielectric function of the electron

gas plasma. A closed-form thermal Green's
function for electrons experiencing Landau
quantization in a magnetic field is used in con
junction with the Green's function formulation
of the RPA, and this results in a relatively
tractable analytical form for the inverse dielectric
function upon which our calculations are based.
We shall not dwell upon the details of the cal
culations here, but merely sketch the principal
theoretical ideas and the basic formulae. A

fuller exposition will be published elesewhere.''
What we do wish to accomplish here is to

present a comprehensive picture of shielding
phenomena in a magnetic field by exhibiting the
results of our calculations in the nondegenerate,
degenerate and quantum strong field limits. (It
has been possible to cover such a broad range
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of interests by taking advantage of the flexibility
of the thermodynamic Green's function method
insofar as the choice of statistical regimes is
concerned. In this regard it was also important
to treat the magnetic field in a non-perturbative
manner, using a closed form Green's function
for Landau electrons). Magnetic field corrections
in the quantum analogue of the Debye-Thomas-
Fermi law will be exhibited. Also the effect of

the magnetic field on the Priedel-Kohn "wiggle"
will be described. In the degenerate case the
magnetic field effects arise through terms mono-
tonic in magnetic field strength, and in addition
through de Haas-van Alphen (DHVA) oscillatory
terms; both types of magnetic field effects will
be discussed in conjunction with both the Debye-
Thomas-Fermi part of the shielding law and the
Friedel-Kohn "wiggle" part of the shielding law.
Finally, one may well expect that maximal in
fluence of the magnetic field is realized in the
quantum strong field limit, and we shall discuss
the fate of the Friedel-Kohn "wiggle" in this
case too. Spatial anisotropy of the shielding
law exists whenever magnetic field effects are
nontrivial, and this will be exhibited in context.

§2. Static Shielding in a Magnetic Field; Low
Wavenumber Description

In opening our discussion of magnetic field
effects on the static shielding of an impurity
charge by an electron plasma, it is important
to note that so long as one is concerned with
semiclassical or classical plasmas the magnetic
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field cannot affect the static shielding law at all,
Tio matter how strong it may be. The reason
for this is simply that the magnetic field can do
no work so long as the plasma electron dynamics
are classical, and therefore the application of a
magnetic field of arbitrary strength cannot provide
any energy which would be necessary for a
redistribution of the shielding charges. However
the magnetic field is no longer insignificant in
regard to the static shielding law when the
quantized nature of plasma electron dynamics
is felt. One can expect substantial magnetic
field effects on shielding when the applied mag
netic field causes changes in the single particle
energy spectrum. As was mentioned in the
Introduction, the calculations were carried out

using a thermodynamic Green's function formu
lation of the RPA description of the inverse
•dielectric function of the plasma, together with
a closed-form thermal Green's function for

Landau electrons in a magnetic field. The
resulting frequency-wavenumber dependent in
verse dielectric function is relatively tractable
analytically and can be applied to the non-
degenerate, degenerate, and quantum strong field
limits. Since the inverse dielectric function

relates an impressed potential at one space-time
point with the effective potential at another
space-time point in the plasma, the long-time
static shielding of a Coulomb impurity charge
may be obtained from the inverse dielectric
function specialized to zero frequency. The
wavenumber dependence of the inverse dielectric
function then yields the details of the shielding
of the Coulomb impurity charge according to
the result below which is exact within the scope
of the RPA (and is exact with respect to magnetic
field dependence).
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impurity). Here, the denominator is given by
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where

The anisotropic quantum analogue of the
Debye-Thomas-Fermi static shielding law may
be derived as the low wavenumber contribution

to V(r, oo). To obtain this one expands
to order p^, and inverts the Fourier transform
(1). The result has the form

eexp{-/-T/(4;reV6i)Op/9C)-|/l +8 cos'y}
ri/Gi 221/1 + 5 cos^ p

(4)

(p=angle between H and r)

where the quantum anisotropy parameter 5 is
defined by

5=Gi/G2-1 , (5)

and the quantum corrected anisotropic effective
Debye length may be identified as

'■z>=[^^(l+5cosV)] (6)
Specific evaluations of dpldli, Gi, G2. and S based
on eqs. (2) and (3) have been carried out, and the
results are given below for the nondegenerate,
degenerate, and quantum strong field limits:
(a) Nondegenerate Limit

^e^dpldli=ma>f ^ , (7a)
Gi = 1 -H co/lmj" {1 - h(a)cl2)^ltiLnh h{coJ2)^} , (7b)
G2=l-(^a)ji3)Vl2. (7c)

X {1 -^(<u„/2)^/tanh «(<u,/2)^} , (7d)

(b) Degenerate Limit

4jre'ap/9C~/ncw//C+(wo)//C)(^a>c/C)''"
X[DHVA Osc.] , (8a)

Gi~l-(WO'+('fpV)(«WO'^'
X[DHVAOsc.], (8b)

G2~1
X[DHVAOsc.], (8c)

5 • G2~( WO'+(^yp7a>/)(
x[DHVAOsc.], (8d)

(c) Quantum Strong Field Limit
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4se>/3C=wcu//2C, (9a)

Gi = l-(cy//a)/)[W4C-l] . (9b)

Q,= \+{m)(T^o>JO\ (9c)

5-Q2=-(l/48)(/}VC)'-(<ypV)[W4C-l] . (9d)

Gi = l-(cy//a)/)[W4C-l] .

In the nondegenerate limit (7), quantum cor
rections arise through the parameter as well
as ftwp^. This result bears out the general state
ment that magnetic field effects are nontrivial
only when quantum corrections are nontrivial.
On the other hand quantum corrections persist
even in the limit of zero magnetic field, in which
case the quantum corrections as well as the
entire shielding law must obviously become
isotropic. Indeed the results (7) behave in this
manner, whereas the earlier nondegenerate shield
ing results of Bonch-Bruevich and Mironov^'
suffer from a spurious zero-field anisotropy, despite
their conceptually valid approach to the limited
nondegenerate case. The results for the degenerate
limit (8) are given for intermediate field strengths,

ftwc < C and tiwc^ > 1. Here we have simply given
"order of magnitude" estimates since the exact
formulae which are represented by (8) are long
and cumbersome. The quantities indicated by

[DHVA Osc.] are of the form 2 cos[2;r«C/^<u„
n=l

—phase], and it should be noted that such DHVA
oscillatory terms are important in the anisotropy
parameter 8. It can be shown that the spectral
composition of the DHVA oscillatory terms
depends sensitively on p(/w//no), through the in
sertion of factors such as ( —1)" cos[;rnp(/n/7Wo)]

in the summand of 2 above. This remark is
n—1

made in connection with the recognition that
the effective mass m associated with the orbital

part of the electronic motion differs from the
ordinary electronic mass »?o and allowance is
made for an anomalous electronic flf-factor. This
"spin effect" phenomenon in the DHVA terms
offers the possibility of determining g{mlm^)
through observations of the quantum corrections
and anisotropy involved in the quantum analogue
of the Debye-Thomas-Fermi shielding law.
Finally it should be noted that the results for
the quantum strong field limit (9) cannot be
expected to be meaningful as either or
(Oc-^Q, since the quantum strong field limit is
defined by fi(Oc>Z a'ld ficucj8>l, and these pre
conditions were used in deriving (9). We shall
discuss other aspects of the shielding law in the
quantum strong field limit in greater detail below.

§3. High Wavenumber Contributions {p 2pp)
to the Static Shielding Law in a Magnetic

Field: Magnetic Field Effects on tbe Friedel-

Kobn "Wiggle"

It is well known that the low-wavenumber

description (which is tantamount to the quantum
analogue of the Debye-Thomas-Fermi static
shielding law discussed above) is severely limited
in the degenerate case, and thus is unable to
describe higher wavenumber phenomena such as
the long range Friedel-Kohn "wiggle" part of
the static shielding law. Qualitatively, one might
expect that the strong anisotropy induced by the
magnetic field in the quantum strong field limit
would result in significant changes in the long
range Friedel-Kohn "wiggle." In order to in
vestigate this, one must use the quantum strong
field limit of the exact RPA result for F(r, oo)
given earlier. Evaluating eqs. (2) and (3) under
conditions appropriate to the quantum strong
field limit, one obtains
F(r, oo) as*,
*  It should be noted that the logarithmic singu

larities in the denominator of the integrand of
V{r, oo) are highly anisotropic since they refer only
to the direction parallel to H, whereas reference
to the plane perpendicular to H enters in a very
different way. This is to be compared with the
occurrence of the logarithmic singularity in the
field-free case, which is completely isotropic. One
can expect the /-^-dependence of the static shielding
law in the quantum strong field limit to be similar
to the Friedel-Kohn "wiggle"; however it is clear
that a very different type of r-dependence is to be
expected. Unfortunately the techniques of Lighthill'>
for Fourier transforming functions having log-
singularities are not useful here, [although they are
successful in the field-free case*)], since they fail to
provide an asymptotic series in the case of eq. (10).
It has recently come to our attention that another
discussion of this problem was undertaken by J.
Durkan, J. E. Hebborn and N. H. March.®' How
ever this discussion fails to yield agreement with
our eq. (10), and it does not include an evaluation of
the Fourier transform which is necessary to provide
information on the part of the static shielding law,
F'(r, oo), which arises from high wave-number con
tributions in the neighborhood of the logarithmic
singularity, p^lpp. (Our result for F'(r, oo) is
presented in eq. (11).) The lack of agreement with
our eq. (10) is manifest in several ways: The one
which is most significant seems to be the neglect
of Pauli spin terms (which are vital to a correct
representation of the quantum strong field limit) in
the considerations of Durkan. Hebborn and March.

Note added in proof; Prof. N. H. March informed
me a few months ago that he and coworkers were
working on numerical evaluation of the shielding
law in the quantum strong field limit, and this
should be of interest to compare with the analytical
results presented here.



Magnetic Field Effects on the Static Shielding of an Impurity Charge
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The branch point of the first log-term in braces
is real (\p^\=2pF), whereas the complex nature
of the branch points for n>\ has been made
explicit by setting (1 where a„ is
real. Insofar as the high wavenumber contribu
tion to the static shielding law is concerned, the
most significant feature of (10) is the log-singu
larity at \pf\ —2pp. We have explored techniques
for evaluating (10), but cannot discuss them in
detail here. The results are rather long and
cumbersome, and we shall be content to present
an approximate asymptotic formula which should
be understood in an "order of magnitude" sense.
With this qualification, the high wavenumber
contribution to the static shielding law in the
quantum strong field limit may be written as,

V'(r, 00)^—

X exp[ - (pc^ I I /8 /7f.) 1 sin y; cos ̂01 e(4C/^a.«) j
xsin(2ppr^—(p)exp(—2pp\r\). (11)

This evaluation of the contribution from the

neighborhood of the logarithmic singularity was
obtained subject to the condition that Pf>Pd,
and the accuracy of this evaluation improves as
magnetic field strength increases, so that its best
accuracy corresponds to an extreme quantum
strong field limit, Equation (11) shows
that the Friedel-Kohn "wiggle" is still discernable
through the rrdependent oscillatory factor
sin{2ppr^—<p), with an angle-dependent phase.
However the strong anisotropy of the quantum
strong field limit results in an r-dependent factor
which confines the "wiggle" within a decaying
exponential envelope Thus the long-
range character of the Friedel-Kohn "wiggle"
is destroyed in the quantum strong field limit.
Moreover, it should be noted that there is also

a relatively slowly decaying r^-dependent ex
ponential envelope factor~exp[—pi3'|rs|/8/>j-].

Finally, we shall discuss the results of our
recent investigation of magnetic field effects on
the Friedel-Kohn "wiggle" under intermediate

field strength conditions, fia)e<Z and ^<y<,jS»l.
It is under these conditions that DHVA oscil
latory terms are most prominent, and we have
explored the possibility of DHVA oscillatory
terms occurring in conjunction with the Friedel-
Kohn "wiggle". At the outset it is appropriate
to point out that under conditions of intermediate
field strength, the long-range character of the
Friedel-Kohn "wiggle" (which is destroyed in
the quantum strong field limit) is restored. In
fact the high wavenumber contribution to the
static shielding law may be represented as

V'(r, oo)=V'(r, oo,{F.K.-(H^O)))

+ V'(r, oo,{F.K.-DHVA}) , (12)

where V'(r, oo,{F.K. —(Fr=;0)}) is the ordinary
zero-field long-range Friedel-Kohn "wiggle" part
of the static shielding law, and V'(,r, co,{F.K.
—DHVA}) represents the effect of DHVA oscil
latory terms on the high wavenumber part of
the shielding law. The calculation of V'{r, 00,
{F.K.—DHVA}) must begin with an evaluation
of the DHVA isolated singularity terms of theSioo+5

ds in (2) and
-t~+8

(3), and one must take account of the essentially
singular character of these isolated singularities
in order to treat high wavenumber shielding
phenomena properly. This evaluation has been
carried out, and after partially inverting the
ensuing Fourier transform (1), we obtain a quasi-
final result given in part by (13), (P=pc—2pF',
7o=modified Bessel function),

V'(r, 00, {F.K.-DHVA})~(e/8-iA')(W0''"

n=l

X exp {± i(2 n!inlfiwc){\ — [(E/2 pp) -h 1 ]^)}

xP^'\P+^PFf'^l(P + 2pF) ̂\ dT'

X expf+i^^{ — -|-lV:^^^liM r"lPf ) (P+2pFf J
xIoi^(P+2pF)(4lilma>y

;|^(-I)»_COS^? )]}P -\-2pF
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Actually there are also other terms in (13) which
will not be exhibited here since the essential

character of the result can be understood from

what is exhibited. An anisotropic Friedel-Kohn
"wiggle" is evident in the factor and its
long range character is destroyed by the factor

g-2pFlri jjjg Qygj. index of the
n=l

isolated essential singularities mentioned above,
which are associated with DHVA oscillatory
terms. However, the DHVA oscillatory terms
occur with effective frequencies which depend
on the wavenumber variable P, for example the
factor exp{±i(2 7rCn/«o).)(l-[(P/2pf) + l]'')} in
(13). Within the context of the P-integral, which500 Poo

dP---= \ dPe*''''e-^'''^\/P0(P),

it is clear that the effective DHVA oscillation

frequency must be taken as {{2iz!^nlfKOc)[(2ppr)''^
or {2ppr)~^]}. The function 0{P) does not
involve r, and it can be expanded in a power
series about P=0 with a finite radius of con

vergence: Such a power series in P" generates
an asymptotic series appropriate for large r
within the context of the P-integral, and the

leading term is given by j dP- • • =1/^/5(2pp)~^
(\r\-ir,)-'/^+0{r-'^'). Thus the DHVA oscil
latory terms are "washed out", because the
asymptotic expansion in powers of {IjZppr)
corresponds in part to an expansion in powers
of the effective DHVA oscillation frequency
{(2 nZn/fi(0c)[{2pFr)~^'^]) • For this reason DHVA
oscillatory terms cannot occur in conjunction
with the Friedel-Kohn "wiggle".
In conclusion, we see that in the case of in

termediate field strength, (fi<Ue«C. the
ordinary zero-field long-range Friedel-Kohn
"wiggle" is still the principal high wavenumber
static shielding phenomenon, and corrections to
it involving the DHVA oscillation frequency are
short range terms in which anisotropic Friedel-
Kohn "wiggle" behavior is discemable. The
corrections involving the DHVA oscillation
frequency have an effective DHVA oscillation
f.-equency given by {(23rCn/fi<Wc)[(2/7^-r)"'''']}, and
therefore DHVA oscillatory terms are "washed
out" in asymptotic considerations for the shielding
law at large distances.
In the quantum strong field limit, ficOc^Q and

fi<Dcj3>l, the Friedel-Kohn "wiggle" itself is
profoundly modified, (11). A "wiggle" is still

discernible through the i-j-dependent oscillatory
factor siTi{2pFr,—<p), with an angle-dependent
phase; and the long-range character of the
"wiggle" is destroyed by an r-dependent decaying
exponential envelope factor (There is
also a relatively slowly decaying r,-dependent
exponential envelope factor). This result has
been derived subject to the restriction pnlpF=
ficop/2 C < 1. Since > 1, one requires experi
mental conditions such that Wc>Wp in order to
observe the forementioned change in character
of the Friedel-Kohn "wiggle". Such experi
mental conditions are realizable in some semicon

ducting materials, InSb for example.
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COMMENT BY THE AUTHOR

The behaviour of the high wavenumber (p'^lpp) Friedel-Kohn "wiggle" contribution to
shielding in the case of intermediate field strength is actually more complicated than I have
described here. The monotonic magnetic field corrections as well as the DHVA magnetic
field corrections are fully analyzed and discussed in detail in my contribution to the Pro
ceedings of the International Symposium on Lattice Defects in Semiconductors, Tokyo, 1966,
to be published soon.




