JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN

VOL. 34, SUPPLEMENT, 1973 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR MOMENTS AND NUCLEAR STRUCTURE, 1972

III-4

E2-Transition Strengths in ⁴⁶Ca and ⁴⁴Ca

M. BINI,[†] ^{†††} P. G. BIZZETI,[†] ^{†††} * A. M. BIZZETI-SONA,[†] ^{†††} P. BLASI,[†] ^{†††} C. ROSSI-ALVAREZ^{††} ^{†††} ^{††††} and G. B. VINGIANI^{††} ^{†††} ^{††††}

> [†]Istituto di Fisica dell'Universita', Firenze, Italy ^{††}Istituto di Fisica dell'Universita', Padova, Italv ^{†††}Istituto Nazionale di Fisica Nucleare ttttLaboratori Nazionali di Legnaro, Padova, Italy

Electric quadrupole moments in $(lf_{7/2})^{\pm 2}$ nuclei have recently been the object of a large experimental effort. In spite of that, the experimental information on ⁴⁶Ca is still scanty:¹⁾ the only available values of quadrupole moments are based on old d,d' measurements, and come out very close to the corresponding ones in ⁴²Ca. On the other hand, ⁴⁶Ca could be expected to lie closer to the pure $(lf_{7/2})^{\pm 2}$ configuration, ⁴⁸Ca being a more stable core than ⁴⁰Ca.

We report here the results of a direct measurement of the ratio between the B(E2) values for the Coulomb excitation of the first 2⁺ state in ⁴⁶Ca and ⁴²Ca. Measurements have been performed at the 5.5 MV Van de Graaff of Laboratori Nazionali di Legnaro, with an α -particle beam of energies $E_{\alpha} = 4.5, 4.75$ and 5.0 MeV. A 40 cm³ Ge(Li) counter, placed at ~1 cm from the target and at 55° with respect to the beam direction, has been used to determine the y-ray intensities.

Two series of measurements have been carried out: one with a target containing (66.44 \pm 0.1)% of ⁴²Ca and $(4.93 \pm 0.1)\%$ of ⁴⁴Ca to determine the ratio between the B(E2) values for ⁴²Ca and ⁴⁴Ca, the other with a target containing $(35.37 \pm 0.1)\%$ of ⁴⁶Ca and (4.42 ± 0.05) % of ⁴⁴Ca to measure the same ratio for ⁴⁶Ca and ⁴⁴Ca.

The measured ratio between the B(E2) values for 44 Ca and 42 Ca is 1.30 \pm 0.06. If one assumes for 42 Ca

* Now at the Technische Üniversität, München (Germany).

the value $B(E2\downarrow) = 75.3 \pm 6.2 \ e^2 \text{fm}^4$ corresponding to a weighted average of recent measurements,²⁾ the transition strength in 44 Ca comes out to be 98.0 \pm 9.2 e^{2} fm⁴ instead of 68 \pm 12 e^{2} fm⁴ as reported in the literature.1) The corresponding ratio for ⁴⁶Ca and 42 Ca is 0.43 \pm 0.03 and the resulting transition strength for ⁴⁶Ca is $B(E2\downarrow) = 32.5 \pm 3.4 \ e^2 \text{fm}^4$.

If a neutron effective charge is defined with respect to the pure $(|f_{7/2})^{\pm 2}$ configuration, one obtains $e_{\rm n} = 1.13 \pm 0.06$ (for $\langle r^2 \rangle = 18.4$ fm²) in ⁴⁶Ca. This value is substantially smaller than the corresponding one, $e_n = 1.72 \pm 0.07$, for the $2^+ - 0^+$ transition in ⁴²Ca but slightly larger than the value³⁾ $e_n = 0.74$ obtained for the $6^+ - 4^+$ transition in the same nucleus. It compares also well with the value $e_{\rm p} - 1 = 0.93 \pm 0.08$ for the corresponding $2^+ - 0^+$ proton transition³⁾ in the ⁵⁴Fe nucleus, whose level scheme shows stricking similarities to the one of ⁴⁶Ca.

References

- 1) See, e.g., R. A. Ricci and P. R. Maurenzig: Rivista del Nuovo Cimento 1 (1969) 291.
- 2) C. W. Towsley et al.: Phys. Rev. Letters 28 (1972) 368; F. R. Metzger and G. K. Tandon: Phys. Rev. 148 (1966) 1133; W. J. Kossler et al.: Phys. Rev. 177 (1969) 1725.
- S. Cochavi et al.: Phys. Rev. C2 (1970) 2241; 3) T. Nomura et al.: Phys. Rev. Letters 25 (1970) 1342.