JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN Vol. 34, Supplement, 1973 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR MOMENTS AND NUCLEAR STRUCTURE, 1972

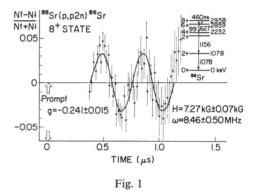
III-7

Magnetic Moment of the $8^+[(vg_{9/2})^{-2}]$ State in ⁸⁶Sr

O. HASHIMOTO, T. NOMURA,[†] T. YAMAZAKI, K. MIYANO,[†] and M. ISHIHARA^{††}

Department of Physics, University of Tokyo, Tokyo [†]Department of Physics, Niigata University, Niigata ^{††}Institute for Nuclear Study, Tanashi-shi, Tokyo

Recently Ishihara *et al.* found the 8⁺ isomeric state in ⁸⁶Sr and determined its half life to be 0.46 ± 0.03 μ sec.¹⁾ The shell-model configuration of the state is $8^+[(\nu g_{9/2})^{-2}]$ where ⁸⁸Sr (Z = 38, N = 50) is assumed to be the core. The ⁸⁸Sr(p, p2n)⁸⁶Sr reaction at the bombarding energy of 51 MeV was used to populate the 8⁺ state. The proton beam provided by the INS synchro-cyclotron was chopped by an electrostatic deflector to produce the pulsed beam of width ~100 nsec and interval ~20 μ sec. The time differential pattern of the 627-keV gamma ray at H = 7.27 kG was observed as shown in the Fig. 1. The g factor of the 8⁺ state was determined to be


 $g(8^+: {}^{86}\mathrm{Sr}) = -0.241 \pm 0.015.$

The main configuration of the ground state in ⁸⁷Sr is the one-hole state of the $g_{9/2}$ neutron. The *g* factor of this state is known to be g = -0.2429 by the NMR experiment.

In the single particle model the g factor of the twohole state $(j^{-2})J$ is simply equal to the g factor of the one-hole state;

$$g(|j^{-2}>) = g(|j^{-1}>)$$

* Present Address: Institute of Physical and Chemical Research Wako-shi, Saitamaken, Japan

The additivity between the g factor of the 8⁺ state in ⁸⁶Sr and that of the 9/2⁺ state in ⁸⁷Sr holds rather well, though these g factors deviate from the Schmidt estimate of -0.425. The deviation $\delta g = g_{exp} - g_{Schmidt} = +0.18$ is nearly accounted for by the theory of Arima and Horie ($\delta g_{1st} \sim$ +0.23).²)

References

- M. Ishihara, H. Kawakami, N. Yoshikawa, M. Sakai and K. Ishii: Phys. Letters 35B (1971) 398.
- A. Arima and H. Horie: Progr. theor. Phys. (Kyoto) 12 (1954) 623.