JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN

VOL. 34, SUPPLEMENT, 1973

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR MOMENTS AND NUCLEAR STRUCTURE, 1972

Ш–8

g and τ Results for High-Spin Isomers in ⁹¹Nb and ⁹¹Zr

C.V.K. BABA, D. B. FOSSAN, T. FAESTERMANN,[†] F. FEILITZSCH,[†] M. R. MAIER,[†] P. RAGHAVAN,[†] R. S. RAGHAVAN[†] and C. SIGNORINI[†]

> University of Munich, Germany †Technical University of Munich, Germany

The g-factors and lifetimes of the $17/2_{\overline{1}}$ state at 2378 keV in ⁹¹Nb and the $(15/2_{\overline{1}})$ state in ⁹¹Zr have been determined. The states were populated by the ⁸⁹Y(α , 2n) ⁹¹Nb and the ⁸⁸Sr(α , n) ⁹¹Zr reactions with pulsed α beams of 21 and 16 MeV, respectively. Time-differential measurements of ω_{L} and τ were made with NaI or Ge(Li) detectors at $\pm 45^{\circ}$ and with external magnetic fields. For the $17/2^{-7}$ state in ⁹¹Nb, both the 394- and 1948-keV γ rays (see Fig. 1) were used. The 1984-keV γ contained both a prompt and a delayed component while the 394-keV γ was all delayed; both γ rays showed a positive A_2 as expected for the transitions. A $g = 1.25 \pm 0.04$ and $\tau = 14.4 \pm 0.5$ nsec were extracted from the data. The calculated g-factor

for a $(\pi g_{9/2}^2, \pi p_{1/2})$ 17/2⁻ state is g = 1.29 using empirical g-factor values.

For the ⁹¹Zr experiment, both the 94- and 2171-keV γ rays (see Fig. 1) had delayed as well as prompt components, which indicates that the lifetime is associated with a level above the 2265-keV state. The 94-keV γ showed a negative A_2 while the 2171-keV γ a positive A_2 , which suggests a $13/2^{-1} \xrightarrow{M1} 11/2^{-1} \xrightarrow{E3} 5/2^{+1}$ cascade. The values $g = 0.71 \pm 0.01$ and $\tau = 41.8 \pm 1.2$ nsec extracted from the data, are consistent with a $15/2^{-1}$ state just above the $13/2^{-1}$ state, although the transition to the $13/2^{-1}$ state was unobserved in the range $E_{\gamma} > 80$ keV. The expected *g*-factor for a $(\pi g_{9/2}, \pi p_{1/2}, \nu d_{5/2}) 15/2^{-1}$ state is g = 0.64.

