JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN VOL. 34, SUPPLEMENT, 1973 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR MOMENTS AND NUCLEAR STRUCTURE, 1972

III-9

g-Factor Measurement of the 2953-keV State in ⁹⁴Mo

T. Faestermann, F. Feilitzsch, R. S. Raghavan, C. Signorini, T. Yamazaki, C.V.K. Baba,[†] D. B. Fossan[†] and D. Proetel[†]

Technical University of Munich, Germany [†]University of Munich, Germany

The nuclear g-factor of the 8^{\pm} state at 2953 keV in ⁹⁴Mo has been determined by use of time-differential PAC techniques. The goal of the experiment was to compare the g-factor of this state, which is expected to be $(\pi g_{9/2}^2, \nu d_{5/2}^2) 8^+$, with those of similar configurations in neighboring nuclei, *i.e.*, ⁹³Nb $(\pi g_{9/2}, \nu d_{5/2}^2)$ $9/2^+$ and ⁹²Mo $(\pi g_{9/2}^2) 8^+$. This state in ⁹⁴Mo was populated with a pulsed 24-MeV α beam by the ⁹²Zr $(\alpha, 2n)$ ⁹⁴Mo reaction. The target was an enriched ⁹²Zr foil of $\simeq 1.0$ mg/cm². The PAC measurements were made at $\pm 45^{\circ}$ with NaI(T1) detectors. The delayed portion of the three cascade γ transitions deexciting the 6⁺₁, 4⁺₁, and 2⁺₁ states ($E_{\gamma} = 843$, 702, and 870 keV, respectively) were used for the timing measurements. A 40 cm³ Ge(Li) detector at 90° lead to identical results but with less statistics. From the Larmor frequency measured with an external field of 15.85 kG, a g-factor of $g = +1.317 \pm 0.020$ has been deduced for the 2953-keV level in ⁹⁴Mo; the data and the least squares fit are presented in the figure. In addition, a more precise lifetime of $\tau = 141 \pm 3$ nsec has been extracted from the data for this level. The present g-factor result shows a slight reduction in comparison to the g-factor for the above mentioned $9/2_1^+$ state in ⁹³Nb of g = 1.3707 and that of the 8[†] state in ⁹²Mo of g = 1.409.

