JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN VOL. 34, SUPPLEMENT, 1973 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR MOMENTS AND NUCLEAR STRUCTURE, 1972

III-16 The g Factor of the 12⁺ Isomeric State in ²⁰⁶Pb and the Effective Orbital g Factor of the Neutron

K. Nakai, B. Herskind, I. Bergström,[†] J. Blomqvist,[†] A. Filevich,[†] K.-G. Rensfelt,[†] J. Sztarkier[†] and S. Nagamiya^{††}

> Niels Bohr Institute, Copenhagen, Denmark †Research Institute for Physics, Stokholm, Sweden ††Institute of Physical and Chemical Research, Japan

The g factor of the $12^+ [(vi_{13/2})^-_2]$ isomeric state in ²⁰⁶Pb ($T_{1/2} = 0.2 \mu$ sec) has been measured. The state was populated by the ²⁰⁴Hg(α , 2n) ²⁰⁶Pb reaction in liquid mercury target with the 27-MeV pulsed α beam from the NBI Tandem accelerator. The value obtained was;

 $g(^{206}\text{Pb}: 12^+) = -0.155 \pm 0.004.$

This result gives the g factor of the $i_{13/2}$ neutron. Since the g factor of the $i_{13/2}$ proton can also be deduced from the $g(^{210}\text{Po}: 11^- [(\pi i_{13/2})(\pi h_{9/2})])$ and the $g(^{209}\text{Bi}: 9/2^- [\pi h_{9/2}])$, we can compare the magnetic moments of the $i_{13/2}$ particles. As shown in the Table I, the comparison indicates that the main deviation of the magnetic moments from the Schmidt values is of isovector charactor.

Using the three available data on g factors of single particle neutron states around the ²⁰⁸Pb core (p_{1/2}, f_{5/2} and i_{13/2}), we tried to deduce the effective orbital g factor of the neutron. Two different methods were used; (i) the M1-core-polarization model and (ii) the configuration-mixing model.

(i) According to the M1-core-polarization model, the magnetic moment of a single particle state is given by, $^{1)}$

$$\mu = j \left\{ (g_1 + \delta g_1) \pm \frac{(g_s + \delta g_s) - (g_1 + \delta g_l)}{2l + 1} \right\}$$
$$+ \delta g'_s \langle (Y_2 s)_1 \rangle .$$
(for $j = l \pm 1/2$)

The three experimental g factors were used to determine the three parameters (δg_l , δg_s , and $\delta g'_s$). In this analysis the state independence of the parameters is assumed. The parameters obtained were; $\delta g_l = -0.036 \pm 0.010$, $\delta g_s = 2.77 \pm 0.15$ and $\delta g'_s = -3.30 \pm 0.22$.

(ii) By use of the configuration-mixing model,²⁾ we can estimate the effect of the spin (core) polarization. Nagamiya and Yamazaki have made an evaluation of the δg_{l} .³⁾ Using the present value of the Table I. Magnetic moments of the $i_{13/2}$ particles.

	μ_{exp}	$\mu_{\rm Schmidt}$	$\mu_{ extsf{exp}} = \mu_{ extsf{schmidt}}$
μ _{proton}	8.07±0.19	8.79	-0.72 ± 0.19
$\mu_{\rm neutron}$	-1.01 ± 0.05	-1.91	0.90 ± 0.05
Sum	7.06±0.20	6.88	0.18 ± 0.20
Difference	9.08 ± 0.20	10.70	-1.62 ± 0.20

 $g(v_{1_{13/2}})$, we have reevaluated the $\delta g_l(n)$. The value obtained was $\delta g_l(n) = -0.04 \pm 0.03$.

The good agreement between the values from the two analyses with different assumption leads us to conclude that

$$g_l^{\text{eff}}(\text{neutron}) = \delta g_l(n) = -0.04 \pm 0.03.$$

References

- 1) A. Bohr and B. Mottelson: *Nuclear Structure* vol. 1 (Benjamin Inc. 1969, New York).
- A. Arima and H. Horie: Progr. theor. Phys. 11 (1954) 509.
- S. Nagamiya and T. Yamazaki: Phys. Rev. C4 (1971) 1961.

Note added after the Conference—A new measurement of the magnetic moment of the $5/2^{-}$ state in ²⁰⁷Pb has been reported in this conference by Schroeder and Toschinski.¹⁾ They used a superconducting magnet to generate magnetic field of 100 kG with good homogeneity. The calibration of the field was done by use of a rotating-coil field meter. The time-integral-PAC method was used to observe the spin-rotation angle. The result was $\mu = 0.79 \pm 0.03$ nm in disagreement with previous value which was used in the present analysis.

A reanalysis based on the new datum yields,

 $g_{l}^{\text{eff}}(\text{neutron}) = \delta g_{l}(n) = -0.02 \pm 0.03.$

1) presented at this conference III-15.